Skip to main content

Direct Laser Cladding , Current Status and Future Scope of Application

  • Chapter
  • First Online:
Laser-Assisted Fabrication of Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 161))

Abstract

During the last decades Direct Laser Cladding has become an established technique in many industrial fields for applying wear and corrosion protection layers on metallic surfaces as well as for the repair of high value-added components. The most important application fields are die and tool making, turbine components for aero engines and power generation, machine components such as axes and gears, and oil drilling components. Continuous wave (CW) lasers with a power up to 18 kW are used on automated machines with three or more axes, enabling 3D cladding . The outstanding feature of DLC is the high precision which leads to a minimum heat input into the work piece and a very low distortion. Due to the high cooling rates a fine grained microstructure is achieved during solidification. A new development in laser cladding is micro cladding in a size range below \(50\,\upmu\hbox{m}\) especially for electronic and medical applications. Furthermore, additive manufacturing is coming again into focus as a clean and resource-efficient method to manufacture and modify functional prototypes as well as unique and small lot parts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Gasser, G. Backes, K. Wissenbach, E. Hoffmann, R. Poprawe, Maßgeschneiderte Oberflächen durch Laserstrahl-Oberflächenbehandlung mit Zusatzwerkstoffen-eine Übersicht, Laser und Optoelektronik 3/1997

    Google Scholar 

  2. M. Kawasaki et al., The Laser Cladding Application at Automotive Parts in Toyota, in Proceedings ISATA, 1992 (1992).

    Google Scholar 

  3. Schutzauftrag, LaserCommunity, Das Laser -Magazin von TRUMPF, 03/2007

    Google Scholar 

  4. K. Eimann, M. Drach, Instandsetzung von Werkzeugen mit Laserstrahlung, in Tagungsband Aachener Kolloquium Lasertechnik AKL 2000, Mai 2000, pp. 29–31

    Google Scholar 

  5. K. Eimann, M. Drach, K. Wissenbach, A. Gasser, Lasereinsatz im Werkzeug- und Formenbau, in Proceedings Stuttgarter Lasertage, Sept 2003, pp. 25–26

    Google Scholar 

  6. J. Nagel, Laserhärten und Laser -Pulver-Auftragschweißen von Umformwerkzeugen, in Tagungsband Aachener Kolloquium Lasertechnik AKL 2004, 2004, pp. 295–305

    Google Scholar 

  7. A. Gasser, K. Wissenbach, I. Kelbassa, G. Backes, Aero engine repair , in Industrial Laser Solutions, Sept 2007, pp. 15–20

    Google Scholar 

  8. W. Meiners, A. Weisheit, Werkstoff-Kompromisse passé?. Form + Werkzeug 5, 78–81 (2007)

    Google Scholar 

  9. O. Meier, P. Stippler, A. Ostendorf, S. Czerner, P. Matteazzi, Direct micro laser cladding with microscale nanophased powders, in ICALEO 2005, 24th International Congress on Applications of Lasers and Electro-Optics, Conference Proceedings, Miami, US, Nov 2005

    Google Scholar 

  10. T. Jambor, K. Wissenbach, Micro-Laser -Cladding with High Quality Fibre Lasers; in LIM 2007, Laser in Manufacturing, 17-22 June 2007, Munich

    Google Scholar 

  11. G. Levy, The role and future of the laser technology in the additive manufacturing environment, 6th International Conference on Laser Assisted Net-Shape Engineering, LANE 2010

    Google Scholar 

  12. D.L. Bourell, Sustainability issues in laser-based additive manufacturing , in 6th International Conference on Laser Assisted Net-Shape Engineering, LANE 2010

    Google Scholar 

  13. N. Pirch, E.W. Kreutz, B. Ollier, X. He, The modeling of heat and solute transport in surface processing with laser radiation, in NATO Advanced Study Institute, Laser Processing: Surface Treatment and Film Deposition, Sesimbra, Portugal, July 1994, pp. 3–16

    Google Scholar 

  14. W. Kurz, D.J. Fisher, Fundamentals of solidification (Trans Tech Publications, Switzerland, 1986)

    Google Scholar 

  15. Y. Yan, Y. Yang, C. Zhao, W. Wu, M. Wang, M. Lu, Laser glazing of NI–Nb and Ni–Ni–Cr alloys and corrosion resistance of amorphous layers. Acta Metall. Sin. 6(1), 52 (1993)

    Google Scholar 

  16. H.W. Bergman, B.L. Mordike, Laser and electron-beam melted amorphous layers. J. Mater. Sci. 16, 863 (1981)

    Article  ADS  Google Scholar 

  17. R. Poprawe, Lasertechnik für die Fertigung (Springer, Heidelberg, 2004), ISBN 3-540-21406-2

    Google Scholar 

  18. M. Miglierini et al., Laser -induced structural modifications of FeMoCuB metallic glasses before and after transformation into a nanocrystalline state. J. Phys.: Condens. Matter. 13, 10359–10369 (2001)

    Article  ADS  Google Scholar 

  19. T. Biermann, G. Backes, A. Gasser, A. Weisheit, Adapted powder feed nozzles for different laser cladding applications. Laser User, 57, 27–28 (2009)

    Google Scholar 

  20. A. Weisheit, K. Wissenbach, Graded layers for wear and corrosion protection produced by laser cladding . In: A. Fischer, K. Bobzin (eds) Friction Wear and Wear Protection (Wiley-VCH, Weinheim, 2009)

    Google Scholar 

  21. S. Ocylok, A. Weisheit, I. Kelbassa, Functionally graded multi-layers by laser cladding for increased wear and corrosion protection, in 6th International Conference on Laser Assisted Net-Shape Engineering, LANE 2010

    Google Scholar 

  22. L. Mingxi, H. Yizhu, Y. Xiaomin, Effect on nano \(\hbox{Y}_{2}\hbox{O}_{3}\) on microstructure of laser cladding cobalt-based alloy coatings. Appl. Surf. Sci. 252, 2882–2887 (2006)

    Google Scholar 

  23. L. Mingxi, Z. Shihong, Z. Huisheng, H. Yizhu, Y. Jae-Hong, S. Tong-Yul, Effect of nano-\(\hbox{CeO}_{2}\) on cobalt-based alloy laser coatings. J. Mat. Proc. Technol. 202, 107–111 (2008)

    Google Scholar 

  24. R. Irving, Taking a powder, Mech. Eng. Mag. http://www.memagazine.org. Sept 1999

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Weisheit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weisheit, A., Gasser, A., Backes, G., Jambor, T., Pirch, N., Wissenbach, K. (2013). Direct Laser Cladding , Current Status and Future Scope of Application. In: Majumdar, J., Manna, I. (eds) Laser-Assisted Fabrication of Materials. Springer Series in Materials Science, vol 161. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28359-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28359-8_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28358-1

  • Online ISBN: 978-3-642-28359-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics