Skip to main content

Lithium dilution cardiac output measurement in the critically ill patient: determination of precision of the technique

  • Chapter
  • First Online:
Applied Physiology in Intensive Care Medicine 1
  • 3739 Accesses

Abstract

Background: Lithium dilution cardiac output by LiDCO TMplus (LiDCO, Cambridge, UK) is a validated methodology for measuring cardiac output. It is used to calibrate a pulse pressure analysis algorithm (PulseCO) for the continuous measurement of subsequent changes in this variable. The variability of measurements, or precision, within patients of lithium dilution cardiac output has not previously been described. Material and methods: Thirty-five hemodynamically stable patients in intensive care, with no significant variability in heart rate, mean arterial pressure or central venous pressure, were recruited. Fifty-three determinations of cardiac output were made, each using four lithium dilution measurement curves performed consecutively within a maximum period of 10 min. The coefficient of variation of the measurements was determined and used to derive the least significant change in cardiac output that this technique could reliably detect. Results: For a single measurement, the coefficient of variation was 8%. This equates to the technique being able to detect a change (least significant change) between two measurements of 24%. Averaging two lithium dilution measurements improved the coefficient of variation to 6% with a least significant change of 17%. Using the average of three curves reduced the coefficient of variation to 5% with a least significant change of 14%. Conclusions: To achieve a good precision with this technique, three lithium dilution measurements should be averaged. This will allow changes in cardiac output of more than 14% to be reliably detected. The understanding of the precision of this technique allows the user to know when a real change has happened to their patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M (2001) Early goaldirected therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377

    Article  PubMed  CAS  Google Scholar 

  2. Pearse R, Dawson D, Fawcett J, Rhodes A, Grounds RM, Bennett ED (2005) Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial [ISRCTN38797445]. Crit Care 9:R687–R693

    Article  PubMed  Google Scholar 

  3. Swan HJ, Ganz W, Forrester J, Marcus H, Diamond G, Chonette D (1970) Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med 283:447–451

    Article  PubMed  CAS  Google Scholar 

  4. Connors AF Jr, Speroff T, Dawson NV, Thomas C, Harrell FE Jr, Wagner D, Desbiens N, Goldman L, Wu AW, Califf RM, Fulkerson WJ Jr, Vidaillet H, Broste S, Bellamy P, Lynn J, Knaus WA (1996) The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA 276:889–897

    Article  Google Scholar 

  5. Cecconi M, Wilson J, Rhodes A (2006) Pulse pressure analysis. In: Vincent JL (ed) Yearbook of intensive care and emergency medicine. Springer, Berlin, pp 176–184

    Chapter  Google Scholar 

  6. Rhodes A, Sunderland R (2004) Arterial pulse pressure analysis: the LiDCOplus system. Update in intensive care and emergency medicine. In: Pinsky MR, Payen D (eds) Functional hemodynamic monitoring. Springer, Heidelberg, pp 183–192

    Google Scholar 

  7. Linton RA, Band DM, Haire KM (1993) A new method of measuring cardiac output in man using lithium dilution. Br J Anaesth 71:262–266

    Article  PubMed  CAS  Google Scholar 

  8. Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160

    Article  PubMed  CAS  Google Scholar 

  9. Cecconi M, Al-Subaie N, Canete M, Dawson D, Puntis M, Poloniecki J, Grounds R, Rhodes A (2007) Lithium dilution cardiac output measurement in the critically ill patient: determination of precision of the technique. Crit Care 11:P294

    Article  Google Scholar 

  10. Lodder MC, Lems WF, Ader HJ, Marthinsen AE, van Coeverden SC, Lips P, Netelenbos JC, Dijkmans BA, Roos JC (2004) Reproducibility of bone mineral density measurement in daily practice. Ann Rheum Dis 63:285–289

    Article  PubMed  CAS  Google Scholar 

  11. Jansen JR, Schreuder JJ, Settels JJ, Kornet L, Penn OC, Mulder PG, Versprille A, Wesseling KH (1996) Single injection thermodilution. A flowcorrected method. Anesthesiology 85:481–490

    CAS  Google Scholar 

  12. Jansen JR, Schreuder JJ, Punt KD, van den Berg PC, Alfieri O (2001) Mean cardiac output by thermodilution with a single controlled injection. Crit Care Med 29:1868–1873

    Article  PubMed  CAS  Google Scholar 

  13. Jansen JR, Schreuder JJ, Bogaard JM, van Rooyen W, Versprille A (1981) Thermodilution technique for measurement of cardiac output during artificial ventilation. J Appl Physiol 51:584–591

    PubMed  CAS  Google Scholar 

  14. Jansen JR, Versprille A (1986) Improvement of cardiac output estimation by the thermodilution method during mechanical ventilation. Intensive Care Med 12:71–79

    Article  PubMed  CAS  Google Scholar 

  15. Jansen JR, Schreuder JJ, Settels JJ, Kloek JJ, Versprille A (1990) An adequate strategy for the thermodilution technique in patients during mechanical ventilation. Intensive Care Med 16:422–425

    Article  PubMed  CAS  Google Scholar 

  16. Jansen JR (1995) The thermodilution method for the clinical assessment of cardiac output. Intensive Care Med 21:691–697

    Article  PubMed  CAS  Google Scholar 

  17. Berthelsen PG, Eldrup N, Nilsson LB, Rasmussen JP (2002) Thermodilution cardiac output. Cold vs room temperature injectate and the importance of measuring the injectate temperature in the right atrium. Acta Anaesthesiol Scand 46:1103–1110

    CAS  Google Scholar 

  18. Nilsson LB, Nilsson JC, Skovgaard LT, Berthelsen PG (2004) Thermodilution cardiac output—are three injections enough? Acta Anaesthesiol Scand 48:1322–1327

    Article  PubMed  CAS  Google Scholar 

  19. Ostergaard M, Nilsson LB, Nilsson JC, Rasmussen JP, Berthelsen PG (2005) Precision of bolus thermodilution cardiac output measurements in patients with atrial fibrillation. Acta Anaesthesiol Scand 49:366–372

    Article  PubMed  CAS  Google Scholar 

  20. Pearse RM, Ikram K, Barry J (2004) Equipment review: an appraisal of the LiDCO plus method of measuring cardiac output. Crit Care 8:190–195

    Article  PubMed  Google Scholar 

  21. Costa MG, Della Rocca G, Chiarandini P, Mattelig S, Pompei L, Barriga MS, Reynolds T, Cecconi M, Pietropaoli P (2008) Continuous and intermittent cardiac output measurement in hyperdynamic conditions: pulmonary artery catheter vs. lithium dilution technique. Intensive Care Med 34:257–263

    Article  PubMed  Google Scholar 

  22. Jonas MM, Tanser SJ (2002) Lithium dilution measurement of cardiac output and arterial pulse waveform analysis: an indicator dilution calibrated beat-bybeat system for continuous estimation of cardiac output. Curr Opin Crit Care 8:257–261

    Article  PubMed  Google Scholar 

  23. Jonas MM, Kelly FE, Linton RA, Band DM, O’Brien TK, Linton NW (1999) A comparison of lithium dilution cardiac output measurements made using central and antecubital venous injection of lithium chloride. J Clin Monit Comput 15:525–528

    Article  PubMed  CAS  Google Scholar 

  24. McGee WT, Horswell JL, Calderon J, Janvier G, Van Severen T, Van den Berghe G, Kozikowski L (2007) Validation of a continuous, arterial pressure-based cardiac output measurement: a multicenter, prospective clinical trial. Crit Care 11:R105

    Article  PubMed  Google Scholar 

  25. Squara P, Denjean D, Estagnasie P, Brusset A, Dib JC, Dubois C (2007) Noninvasive cardiac output monitoring (NICOM): a clinical validation. Intensive Care Med 33:1191–1194

    Article  PubMed  Google Scholar 

  26. Critchley LA, Critchley JA (1999) A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J Clin Monit Comput 15:85–91

    Article  PubMed  CAS  Google Scholar 

  27. Cecconi M, Grounds M, Rhodes A (2007) Methodologies for assessing agreement between two methods of clinical measurement: are we as good as we think we are? Curr Opin Crit Care 13:294–296

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cecconi, M., Dawson, D., Grounds, R.M., Rhodes, A. (2012). Lithium dilution cardiac output measurement in the critically ill patient: determination of precision of the technique. In: Pinsky, M., Brochard, L., Hedenstierna, G., Antonelli, M. (eds) Applied Physiology in Intensive Care Medicine 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28270-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28270-6_39

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28269-0

  • Online ISBN: 978-3-642-28270-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics