Skip to main content

Regional Gravity Field Modeling: Theory and Practical Results

  • Chapter
  • First Online:

Abstract

Geodesy, with its three core areas positioning and reference systems, Earth rotation determination, and gravity field modeling, is striving for a relative accuracy of at least 10−9 for all relevant quantities, and to a great extent this goal has already been reached (10−9 corresponds to about 6 mm relative to the Earth’s radius and \( 10^{ - 8} \,{\text{ms}}^{ - 2} = 1\,\upmu {\text{Gal}} \) in terms of gravity). Regarding gravity field modeling, the highest accuracy demands are from geodesy, especially Global Navigation Satellite System (GNNS) positioning, oceanography, and geophysics. In this context, the geoid and quasigeoid are of major interest; e.g., these quantities are required for the transformation between the purely geometric GNSS (ellipsoidal) heights and gravity field related heights as well as for the modeling of the (mean) dynamic ocean topography (DOT), requiring accuracies at the level of about 1 cm or even below. In this way, the importance of geoid and quasigeoid modelling has increased considerably—also for economic reasons—and as early as 1982 Torge (1982) postulated a “renaissance of the geoid.”

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ågren J, Svensson R (2007) Postglacial land uplift model and system definition for the new Swedish height system RH 2000. Reports in geodesy and geographical information systems, Lantmateriet, Gävle

    Google Scholar 

  • Andersen EG (1976) The effect of the topography on solution of Stokes’ problem. Unisurv S-14, Sydney

    Google Scholar 

  • Andersen EG, Rizos C, Mather RS (1975) Atmospheric effects in physical geodesy. Unisurv G-23, Sydney, pp 23–41

    Google Scholar 

  • Andersen OB, Knudsen P, Berry PAM (2010) The DNSC08GRA global marine gravity field from double retracked satellite altimetry. J Geod 84:191–199

    Article  Google Scholar 

  • Andersen OB, Knudsen P, Trimmer R (2005) Improved high resolution altimetric gravity field mapping (KMS2002 global marine gravity field). In: Sansò F (ed) A window on the future of geodesy, IAG symposia, vol 128. Springer-Verlag, Berlin, Heidelberg, pp 326–331

    Google Scholar 

  • Angermann D, Seitz M, Drewes H (2012) Global terrestrial reference systems and their realizations. Sciences of geodesy—II, this volume. Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  • Bäumker M (1984) Zur dreidimensionalen Ausgleichung von terrestrischen und Satellitenbeobachtungen. Wiss. Arb. d. Fachr. Verm.wesen d. Univ. Hannover, Nr. 130, Hannover

    Google Scholar 

  • Behrend D (1999) Untersuchungen zur Schwerefeldbestimmung in den europäischen Randmeeren. Wiss. Arb. d. Fachr. Verm.wesen d. Univ. Hannover, Nr. 229, Hannover

    Google Scholar 

  • Bian S (1997) Some cubature formulas for singular integrals in physical geodesy. J Geod 71:443–453

    Article  Google Scholar 

  • BIPM (2006) Le Système international d’unités—The International System of Units (SI), 8th edn. Bureau international des poids et measures, Sèvres, France

    Google Scholar 

  • Bosch W, Savcenko R (2010) On estimating the dynamic ocean topography—a profile based approach. In: Mertikas SP (ed) Gravity, geoid and earth observation, IAG symposia, vol 135. Springer-Verlag, Berlin, Heidelberg, pp 263–269

    Google Scholar 

  • Bürki B, Müller A, Kahle H-G (2004) DIADEM: the new digital astronomical deflection measuring system for high-precision measurements of deflections of the vertical at ETH Zurich. In: Proceedings of gravity, geoid and space missions, GGSM 2004, IAG symposia, Porto, Portugal, 30 Aug–3 Sept (CD)

    Google Scholar 

  • Bursa M, Groten E, Kenyon S, Kouba J, Radej K, Vatrt V, Voytiskova M (2002) Earth’s dimension specified by geoidal potential. Stud Geophys Geod 46:1–8

    Article  Google Scholar 

  • Bursa M, Kenyon S, Kouba J, Radej K, Vatrt V, Voytiskova M (2001) In: Drewes H, Dodson A, Fortes LPS, Sanchez L, Sandoval P (eds) Vertical reference system, IAG symposia, vol 124. Springer-Verlag, Berlin, Heidelberg, pp 291–296

    Google Scholar 

  • Campbell J (1971) Eine Erweiterung der Theorie des astronomischen Nivellements bei Einbeziehung von Schweremessungen. Wiss. Arb. d. Lehrstühle f. Geodäsie, Photogrammetrie und Kartographie a. d. Techn. Univ. Hannover, Nr. 49, Hannover

    Google Scholar 

  • Cazenave A, Chen J (2010) Time-variable gravity from space and present-day mass redistribution in the earth system. Earth Planet Sci Lett 298:263–274

    Article  Google Scholar 

  • Christie RR (1994) A new geodetic heighting strategy for Great Britain. Surv Rev 32:328–343

    Article  Google Scholar 

  • Christodoulidis DC (1979) Influence of the atmospheric masses on the gravitational field of the Earth. Bull Géod 53:61–77

    Article  Google Scholar 

  • Condi F, Wunsch C (2004) Gravity field variability, the geoid, and ocean dynamics. In: Sansò F (ed) V Hotine-Marussi symposium on mathematical geodesy, IAG symposia, vol 127. Springer-Verlag, Berlin, Heidelberg, pp 285–292

    Google Scholar 

  • Demianov GV, Majorov AN (2004) On the definition of a common world normal height system. In: Physical geodesy, scientific and technical reports on geodesy, photogrammetry and cartography, Federal Office of Geodesy and Cartography (Roskartographia), ZNIIGAiK, Moscow, pp 168–182 (in Russian)

    Google Scholar 

  • Denker H (1988) Hochauflösende regionale Schwerefeldbestimmung mit gravimetrischen und topographischen Daten. Wiss. Arb. d. Fachr. Verm.wesen d. Univ. Hannover, Nr. 156, Hannover

    Google Scholar 

  • Denker H (1989) A new gravimetric quasigeoid for the Federal Republic of Germany. Deutsche Geodät. Komm., Reihe B, Nr. 291, München

    Google Scholar 

  • Denker H (1998) Evaluation and improvement of the EGG97 quasigeoid model for Europe by GPS and leveling data. In: Vermeer M, Ádám J (eds) Second continental workshop on the geoid in Europe, Proceedings Rep. Finnish Geod. Inst., vol 98, issue 4, Masala, pp 53–61

    Google Scholar 

  • Denker H (2001) On the effect of datum inconsistencies in gravity and position on Europen geoid computations. Poster, IAG 2001 scientific assembly, 2–7 Sept 2001, Budapest

    Google Scholar 

  • Denker H (2003) Computation of gravity gradients over Europe for calibration/validation of GOCE data. In: Tziavos IN (ed) Gravity and geoid 2002, 3rd Meeting of the Internat. Gravity and Geoid Commission, Ziti Editions, Thessaloniki, pp 287–292

    Google Scholar 

  • Denker H (2005) Evaluation of SRTM3 and GTOPO30 terrain data in Germany. In: Jekeli C, Bastos L, Fernandes J (eds) Gravity, geoid and space missions, IAG symposia, vol 129. Springer-Verlag, Berlin, Heidelberg, pp 218–223

    Google Scholar 

  • Denker H, Barriot J-P, Barzaghi R, Fairhead D, Forsberg R, Ihde J, Kenyeres A, Marti U, Sarrailh M, Tziavos IN (2009) The development of the European gravimetric geoid model EGG07. In: Sideris MG (ed) Observing our changing earth, IAG symposia, vol 133. Springer-Verlag, Berlin, Heidelberg, pp 177–186

    Google Scholar 

  • Denker H, Barriot J-P, Barzaghi R, Forsberg R, Ihde J, Kenyeres A, Marti U, Tziavos IN (2005) Status of the European gravity and geoid project EGGP. In: Jekeli C, Bastos L, Fernandes J (eds) Gravity, geoid and space missions, IAG symposia, vol 129. Springer-Verlag, Berlin, Heidelberg, pp 125–130

    Google Scholar 

  • Denker H, Roland M (2005) Compilation and evaluation of a consistent marine gravity data set surrounding Europe. In: Sansò F (ed) A window on the future of geodesy, IAG symposia, vol 128. Springer-Verlag, Berlin, Heidelberg, pp 248–253

    Google Scholar 

  • Denker H, Torge W (1998) The European gravimetric quasigeoid EGG97—An IAG supported continental enterprise. In: Forsberg R, Feissel M, Dietrich R (eds) Geodesy on the move—Gravity, geoid, geodynamics and Antarctica, IAG symposia, vol 119. Springer-Verlag, Berlin, Heidelberg, pp 249–254

    Google Scholar 

  • Denker H, Tziavos IN (1999) Investigation of the Molodensky series terms for terrain reduced gravity field data. Boll Geof Teor Appl 40:195–203

    Google Scholar 

  • Denker H, Wenzel H-G (1987) Local geoid determination and comparison with GPS results. Bull Géod 61:349–366

    Article  Google Scholar 

  • Duquenne H, Duquenne F, Rebischung P (2007) New scientific levelling network NIREF. Data set and internal report, prepared for European gravity and geoid project (EGGP)

    Google Scholar 

  • Ecker E, Mittermayer E (1969) Gravity corrections for the influence of the atmosphere. Boll Geof Teor Appl 11:70–80

    Google Scholar 

  • Eeg J, Krarup T (1973) Integrated geodesy. The Danish Geodetic Institute, Internal Rep. No. 7, Copenhagen

    Google Scholar 

  • Ekman M (1989a) The impact of geodynamic phenomena on systems for height and gravity. In: Andersen OB (ed) Modern techniques in geodesy and surveying, National Survey and Cadastre, KMS, Denmark, Publ. 4. Series vol. 1. Copenhagen, Denmark, pp 109–167

    Google Scholar 

  • Ekman M (1989b) Impacts of geodynamic phenomena on systems for height and gravity. Bull Géod 63:281–296

    Article  Google Scholar 

  • Ekman M (1996) The permanent problem of the permanent tide: what to do with it in geodetic reference systems? Marées Terrestres. Bull d’Inf 125:9508–9513 (Bruxelles)

    Google Scholar 

  • Elhabiby M, Sampietro D, Sansò F, Sideris MG (2009) BVP, global models and residual terrain correction. In: Sideris MG (ed) Observing our changing earth, IAG symposia, vol 133. Springer-Verlag, Berlin, Heidelberg, pp 211–217

    Google Scholar 

  • ESA (1999) Gravity field and steady-state ocean circulation mission. Reports for mission selection, the four candidate earth explorer core missions, ESA SP-1233(1)

    Google Scholar 

  • Featherstone WE, Kirby JF, Hirt C, Filmer MS, Claessens SJ, Brown NJ, Hu G, Johnston GM (2011) The AUSGeoid09 model of the Australian height datum. J Geod 85:133–150

    Article  Google Scholar 

  • Flechtner F, Thomas M, Dobslaw H (2010) Improved non-tidal atmospheric and oceanic de-aliasing for GRACE and SLR satellites. In: Flechtner F, Gruber Th, Güntner A, Mandea M, Rothacher M, Schöne T, Wickert J (eds) System earth via geodetic-geophysical space techniques, advanced technologies in earth sciences. Springer-Verlag, Berlin, pp 131–142

    Chapter  Google Scholar 

  • Flury J, Rummel R (2009) On the geoid-quasigeoid separation in mountain areas. J Geod 83:829–847

    Article  Google Scholar 

  • Forsberg R (1984) A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modeling. Report Department of Geodetic Science, no 355, The Ohio State University, Columbus, Ohio, USA

    Google Scholar 

  • Forsberg R (1987) A new covariance model for inertial gravimetry and gradiometry. J Geophys Res B 92:1305–1310

    Article  Google Scholar 

  • Forsberg R (1993) Modelling of the fine-structure of the geoid: methods, data requirements and some results. Surv Geophys 14:403–418

    Article  Google Scholar 

  • Forsberg R (2010) Geoid determination in the mountains using ultra-high resolution spherical harmonic models—the Auvergne case. In: Contadakis ME, Kaltsikis C, Spatalas S, Tokmakidis K, Tziavos IN (eds) The apple of the knowledge, In Honor of Professor Emeritus Demetrius N. Arabelos, pp 101–111. Ziti Editions (ISBN: 978-960-243-674-5), Thessaloniki

    Google Scholar 

  • Forsberg R, Kenyon S (2004) Gravity and geoid in the Arctic region—the northern GOCE polar gap filled. In: Proceedings of 2nd international GOCE workshop, Esrin, 8–10 March 2004, CD-ROM

    Google Scholar 

  • Forsberg R, Tscherning CC (1981) The use of height data in gravity field approximation. J Geophys Res B 86:7843–7854

    Article  Google Scholar 

  • Forsberg R, Tscherning CC (1997) Topographic effects in gravity field modelling for BVP. In: Sansò F, Rummel R (eds) Geodetic boundary value problems in view of the one centimeter geoid, Lecture notes in earth sciences, vol 65. Springer-Verlag, Berlin, Heidelberg, pp 241–272

    Google Scholar 

  • Förste C, and 12 others (2008a) The GeoForschungsZentrum Potsdam/Groupe de Recherche de Gèodésie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C. J Geod 82:331–346

    Google Scholar 

  • Förste C, and 12 others (2008b) EIGEN-GL05C—a new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation. In: General assembly European Geosciences Union (Vienna, Austria 2008), Geophysical research abstracts, vol 10, Abstract No. EGU2008-A-06944

    Google Scholar 

  • Gitlein O, Timmen L (2006) Atmospheric mass flow reduction for terrestrial absolute gravimetry in the Fennoscandian land uplift network. In: Tregoning P, Rizos C (eds) Dynamic planet, IAG symposia, vol 130. Springer-Verlag, Berlin, Heidelberg, pp 461–466

    Google Scholar 

  • Goad CC, Tscherning CC, Chin MM (1984) Gravity empirical covariance values for the continental United States. J Geophys Res B 89:7962–7968

    Article  Google Scholar 

  • Grafarend EW (1978a) The definition of the telluroid. Bull Géod 52:25–37

    Article  Google Scholar 

  • Grafarend EW (1978b) Operational geodesy. In: Moritz H, Sünkel H (eds) Approximation methods in geodesy, Sammlung Wichmann, Neue Folge, Bd. 10, H. Wichmann Verlag, Karlsruhe, pp 235–284

    Google Scholar 

  • Grafarend EW (1988) The geometry of the Earth’s surface and the corresponding function space of the terrestrial gravitational field. In: Festschrift Rudolf Sigl zum 60. Geburtstag, Deutsche Geod. Komm., Reihe B, Heft Nr. 287, pp 76–94 (München)

    Google Scholar 

  • Grote T (1996) Regionale Quasigeoidmodellierung aus heterogenen Daten mit “cm”-Genauigkeit. Wiss. Arb. d. Fachr. Verm.wesen d. Univ. Hannover, Nr. 212, Hannover

    Google Scholar 

  • Haagmans R, de Min E, von Gelderen M (1993) Fast evaluation of convolution integrals on the sphere using 1D FFT, and a comparison with existing methods for Stokes’ integral. Manuscripta geodaetica 18:227–241

    Google Scholar 

  • Haagmans R, Prijatna K, Omang O (2003) An alternative concept for validation of GOCE gradiometry results based on regional gravity. In: Tziavos IN (ed) Gravity and geoid 2002, 3rd meeting of the Internat. Gravity and Geoid commission, pp 281–286, Ziti Editions, Thessaloniki

    Google Scholar 

  • Heck B (1986) A numerical comparison of some telluroid mappings. In: Proceedings of I Hotine-Marussi symposium on mathematical geodesy (Roma, 3–6 June 1985), vol. 1. Milano, pp 19–38

    Google Scholar 

  • Heck B (1990) An evaluation of some systematic error sources affecting terrestrial gravity anomalies. Bull Géod 64:88–108

    Article  Google Scholar 

  • Heck B (1991) On the linearized boundary value problems of physical geodesy. Report Department of Geodetic Science and Surveying, no 407, The Ohio State University, Columbus, Ohio, USA

    Google Scholar 

  • Heck B (1997) Formulation and linearization of boundary value problems: from observables to a mathematical model. In: Sansò F, Rummel R (eds) Geodetic boundary value problems in view of the one centimeter geoid, Lecture notes in earth sciences, vol 65. Springer-Verlag, Berlin, Heidelberg, pp 121–160

    Google Scholar 

  • Heck B (2003) Rechenverfahren und Auswertemodelle der Landesvermessung—Klassische und moderne Methoden, 3rd edn. Wichmann Verlag, Heidelberg

    Google Scholar 

  • Heck B (2004) Problems in the definition of vertical reference frames. In: Sansò F (ed) V Hotine-Marussi symposium on mathematical geodesy, IAG symposia, vol 127. Springer-Verlag, Berlin, Heidelberg, pp 164–173

    Google Scholar 

  • Heck B, Rummel R (1990) Strategies for solving the vertical datum problem using terrestrial and satellite geodetic data. In: Sünkel H, Baker T (eds) Sea surface topography and the geoid, IAG symposia, vol 104. Springer-Verlag, Berlin, Heidelberg, pp 116–128

    Google Scholar 

  • Heck B, Seitz K (2007) A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modeling. J Geod 81:121–136

    Article  Google Scholar 

  • Hein GW (1986) Integrated geodesy—state-of-the-art 1986 reference text. In: Sünkel H (ed) Mathematical and numerical techniques in physical geodesy, lecture notes in earth sciences, vol 7. Springer-Verlag, Berlin, Heidelberg, pp 505–548

    Google Scholar 

  • Heiskanen WA, Moritz H (1967) Physical geodesy. W.H. Freeman and Company, San Francisco

    Google Scholar 

  • Hipkin RG (2004) Ellipsoidal geoid computation. J Geod 78:167–179

    Article  Google Scholar 

  • Hipkin R, Haines K, Beggan C, Bingley R, Hernandez F, Holt J, Baker T (2004) The geoid EDIN2000 and mean sea surface topography around the British Isles. Geophys J Int 157:565–577

    Article  Google Scholar 

  • Hirt C (2004) Entwicklung und Erprobung eines digitalen Zenitkamerasystems für die hochpräzise Lotabweichungsbestimmung. Wiss. Arb. d. Fachr. Verm.wesen d. Univ. Hannover, Nr. 253, Hannover

    Google Scholar 

  • Hirt C, Feldmann-Westendorff U, Denker H, Flury J, Jahn C-H, Lindau A, Seeber G, Voigt C (2008) Hochpräzise Bestimmung eines astrogeodätischen Quasigeoidprofils im Harz für die Validierung des Quasigeoidmodells GCG05. Zeitschrift f. Verm.wesen (zfv) 133:108–119

    Google Scholar 

  • Hirt C, Flury J (2008) Astronomical-topographic levelling using high-precision astrogeodetic vertical deflections and digital terrain model data. J Geod 82:231–248

    Article  Google Scholar 

  • Hirt C, Seeber G (2008) Accuracy analysis of vertical deflection data observed with the Hannover digital zenith camera system TZK2-D. J Geod 82:347–356

    Article  Google Scholar 

  • Hirt C, Schmitz M, Feldmann-Westendorff U, Wübbena G, Jahn C-H, Seeber G (2010) Mutual validation of GNSS height measurements from high-precision geometric-astronomical levelling. GPS Solutions 15:149–159

    Article  Google Scholar 

  • Hotine M (1969) Mathematical geodesy. ESSA Monograph 2, U.S. Department of Commerce, Washington

    Google Scholar 

  • IAG (1970) Geodetic reference system 1967. Publ. Spéciale du Bull Géod, Paris

    Google Scholar 

  • IAG (1984) Resolutions of the XVIII general assembly of the International Association of Geodesy, Hamburg, Germany, 15–27 Aug 1983. J Geod 58:309–323

    Google Scholar 

  • IERS (2010) IERS conventions (2010). In: Petit G, Luzum B (eds) IERS technical note no. 36, Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main

    Google Scholar 

  • Ihde J (2009) Inter-commission project 1.2: vertical reference frames. In: Drewes H, Hornik H (eds) International Association of Geodesy, Travaux, vol 36

    Google Scholar 

  • Ihde J, Adam J, Gurtner W, Harsson BG, Sacher M, Schlüter W, Wöppelmann G (2000) The height solution of the European vertical reference network (EUVN). Veröff. Bayer. Komm. für die Internat. Erdmessung, Astronom. Geod. Arb., Nr. 61, München pp 132–145

    Google Scholar 

  • Ihde J, Mäkinen J, Sacher M (2008) Conventions for the definition and realization of a European vertical reference system (EVRS)—EVRS conventions 2007. EVRS conventions V5.1, Bundesamt für Kartographie und Geodäsie, Finnish Geodetic Institute, publication date 17 Dec 2008

    Google Scholar 

  • Ihde J, Sanchez L (2005) A unified global height reference system as a basis for IGGOS. J Geodyn 40:400–413

    Article  Google Scholar 

  • Ihde J, Wilmes H, Müller J, Denker H, Voigt C, Hosse M (2010) Validation of satellite gravity field models by regional terrestrial data sets. In: Flechtner F, Gruber Th, Güntner A, Mandea M, Rothacher M, Schöne T, Wickert J (eds) System earth via geodetic-geophysical space techniques, advanced technologies in earth sciences. Springer-Verlag, Berlin, pp 277–296

    Chapter  Google Scholar 

  • Jekeli C (1983) A numerical study of the divergence of the spherical harmonic series of the gravity and height anomalies at the Earth’s surface. Bull Géod 57:10–28

    Article  Google Scholar 

  • Jekeli C (2009) Potential theory and static gravity field of the Earth. In: Herring T (vol ed) Treatise on geophysics, vol 3, Geodesy. Elsevier, Amsterdam, pp 11–42

    Google Scholar 

  • Jekeli C, Yang HJ, Kwon JH (2009) Evaluation of EGM08—globally and locally in South Korea. In: External quality evaluation reports of EGM08, Newton’s Bulletin, vol 4, pp 38–49

    Google Scholar 

  • JPL (2007) SRTM—The mission to map the world. Jet Propulsion Laboratory, California Institute of Technology. http://www2.jpl.nasa.gov/srtm/index.html

  • Kaula WM (1966) Theory of satellite geodesy. Blaisdell Publ. Comp., Waltham (Mass.)

    Google Scholar 

  • Kellog OD (1953) Foundations of potential theory. Dover Publ. Inc., New York

    Google Scholar 

  • Kelsey J (1972) Geodetic aspects concerning possible subsidence in Southeastern England. Phil Trans R Soc Lond 272:141–149. doi:10.1098/rsta.1972.0040

    Article  Google Scholar 

  • Kenyeres A, Sacher M, Ihde J, Denker H, Marti U (2010) EUVN Densification action—final report. http://www.bkg.bund.de/nn_166762/geodIS/EVRS/EN/Projects/02EUVN-DA/01Introduction/introduction__node.html__nnn=true

  • Kern M (2004) A comparison of data weighting methods for the combination of satellite and local gravity data. In: Sansò F (ed) V Hotine-Marussi Symposium on mathematical geodesy, IAG symposia, vol 127. Springer-Verlag, Berlin, Heidelberg, pp 137–144

    Google Scholar 

  • Kovalevsky J, Seidelmann PK (2004) Fundamentals of astrometry. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Krarup T (1969) A contribution to the mathematical foundation of physical geodesy. Geodætisk Institut, Meddelelse No. 44, Copenhagen

    Google Scholar 

  • Kumar M (2005) When ellipsoidal heights will do the job, why look elsewhere? Surv Land Inf Sci 65:91–94

    Google Scholar 

  • Kurtenbach E, Mayer-Gürr T, Eicker A (2009) Deriving daily snapshots of the Earth’s gravity field from GRACE L1B data using Kalman filtering. Geophys Res Lett 36:L17102. doi:10.1029/2009GL039564

    Article  Google Scholar 

  • Lemoine FG, and 14 others (1998) The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96. NASA/TP-1998-206861, Greenbelt, MD, USA

    Google Scholar 

  • Li YC, Sideris MG, Schwarz K-P (1995) A numerical investigation on height anomaly prediction in mountainous areas. Bull Géod 69:143–156

    Article  Google Scholar 

  • Liebsch G, Schirmer U, Ihde J, Denker H, Müller J (2006) Quasigeoidbestimmung für Deutschland. DVW-Schriftenreihe 49:127–146

    Google Scholar 

  • MacMillan WD (1958) Theoretical mechanics, vol 2., The theory of the potential. Dover Publ. Inc., New York

    Google Scholar 

  • Mäkinen J, Ihde J (2009) The permanent tide in height systems. In: Sideris MG (ed) Observing our changing earth, IAG symposia, vol 133. Springer-Verlag, Berlin, Heidelberg, pp 81–87

    Google Scholar 

  • Marti U, Schlatter A (2001) The new height system in Switzerland. In: Drewes H, Dodson A, Fortes LPS, Sanchez L, Sandoval P (eds) Vertical reference system, IAG symposia, vol 124. Springer-Verlag, Berlin, Heidelberg, pp 50–55

    Google Scholar 

  • Marussi A (1985) Intrinsic geodesy. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Mayer-Gürr T (2006) Gravitationsfeldbestimmung aus der Analyse kurzer Bahnbögen am Beispiel der Satellitenmissionen CHAMP und GRACE. Dissertation, University of Bonn

    Google Scholar 

  • Mayer-Gürr T, Kurtenbach E, Eicker A (2010) ITG-Grace2010 gravity field model. URL: www.igg.uni-bonn.de/apmg/index.php

  • Meschkowski H (1962) Hilbertsche Räume mit Kernfunktionen. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Mohr PJ, Taylor BN, Newell DB (2008) CODATA recommended values of the fundamental physical constants: 2006. Rev Mod Phys 80:633–730

    Article  Google Scholar 

  • Molodenskii MS, Eremeev VF, Yurkina MI (1962) Methods for study of the external gravitational field and figure of the Earth. Translation of the Russian Book, Israel Program for Scientific Translations, Jerusalem

    Google Scholar 

  • Morelli C, Pisani M, Gantar C (1975) Geophysical anomalies and tectonics in the Western Mediterranean. Boll Geof Teor Appl 18(67):211–249 (Trieste)

    Google Scholar 

  • Moritz H (1962) Interpolation and prediction of gravity and their accuracy. Report Department of Geodetic Science, no. 24, The Ohio State University, Columbus, Ohio, USA

    Google Scholar 

  • Moritz H (1971) Kinematical geodesy II. Report Department of Geodetic Science, no. 165, The Ohio State University, Columbus, Ohio, USA

    Google Scholar 

  • Moritz H (1976) Integral formulas and collocation. Manuscripta Geod 1:1–40

    Google Scholar 

  • Moritz H (1980) Advanced physical geodesy. Wichmann, Karlsruhe

    Google Scholar 

  • Moritz H (2000) Geodetic reference system 1980. J Geod 74:128–133

    Article  Google Scholar 

  • Morse PM, Feshbach H (1953) Methods of theoretical physics. McGraw-Hill, New York

    Google Scholar 

  • Müller J, Soffel M, Klioner SA (2008) Geodesy and relativity. J Geod 82:133–145

    Article  Google Scholar 

  • NIMA (1997) Department of Defense World Geodetic System 1984—its definition and relationships with local geodetic datums. NIMA National Imagery and Mapping Agency, Technical Report, NIMA TR8350.2, 3rd Edition, 4 July 1997 (Amendment 1, 3 Jan. 2000; Amendment 2, 23 June 2004)

    Google Scholar 

  • NIMA (2002) Addendum to NIMA TR 8350.2: implementation of the World Geodetic System 1984 (WGS 84) reference frame G1150. http://earth-info.nga.mil/GandG/publications/tr8350.2/tr8350_2.html

  • Omang OCD, Tscherning CC, Forsberg R (2012) Generalizing the harmonic reduction procedure in residual topographic modeling. In: Sneeuw N, Novák P, Crespi M, Sansò F (eds) VII Hotine-Marussi symposium on mathematical geodesy, IAG symposia, vol 137. Springer-Verlag, Berlin, Heidelberg, pp 233–238

    Google Scholar 

  • Pail R, Bruinsma S, Migliaccio F, Foerste C, Goiginger H, Schuh W-D, Hoeck E, Reguzzoni M, Brockmann JM, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sansò F, Tscherning CC (2011) First GOCE gravity field models derived by three different approaches. J Geod 85:819–843

    Article  Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2008) An earth gravitational model to degree 2160: EGM2008. Presentation, 2008 general assembly of the European Geosciences Union, Vienna, Austria, 13–18 Apr 2008

    Google Scholar 

  • Poutanen M, Vermeer M, Mäkinen J (1996) The permanent tide in GPS positioning. J Geod 70:499–504

    Google Scholar 

  • Rapp RH (I983a) The need and prospects for a world vertical datum. In: Proceedings lAG symposia, IUGG XVIII General Assembly, Hamburg, FRG, 1983, vol 2. Report Department of Geodetic Science and Surveying. The Ohio State University, Columbus, Ohio, USA, pp 432-445

    Google Scholar 

  • Rapp RH (1983b) Tidal gravity computations based on recommendations of the standard earth tide committee. Bull. d’Inf., Marées Terrestres 89: 5814–5819 (Bruxelles)

    Google Scholar 

  • Rapp RH (1995) A world vertical datum proposal. Allg Verm Nachr 102:297–304

    Google Scholar 

  • Rapp RH (1997) Use of potential coefficient models for geoid undulation determinations using a spherical harmonic representation of the height anomaly/geoid undulation difference. J Geod 71:282–289

    Article  Google Scholar 

  • Rapp RH, Balasubramania N (1992) A conceptual formulation of a world height system. Report Department of Geodetic Science and Surveying, no. 421. The Ohio State University, Columbus, Ohio, USA

    Google Scholar 

  • Rapp RH, Nerem RS, Shum CK, Klosko SM, Williamson RG (1991) Consideration of permanent tidal deformation in the orbit determination and data analysis for the Topex/Poseidon mission. NASA Technical Memorandum 100775, Goddard Space Flight Center, Greenbelt, MD, USA

    Google Scholar 

  • Rebischung P, Duquenne H, Duquenne F (2008) The new French zero-order levelling network—first global results and possible consequences for UELN. EUREF 2008 symposium, Brussels, Belgium, 18–21 June 2008

    Google Scholar 

  • Rummel R (1988) Zur iterativen Lösung der geodätischen Randwertaufgabe. In: Festschrift Rudolf Sigl zum 60. Geburtstag, Deutsche Geod. Komm., Reihe B, Heft Nr. 287, pp 175–181 (München)

    Google Scholar 

  • Rummel R (1995) The first degree harmonics of the Stokes problem—what are the practical implications? In: Festschrift E. Groten on the occasion of his 60th anniversary, pp 98–106 (Munich)

    Google Scholar 

  • Rummel R (1997) Spherical spectral properties of the Earth’s gravitational potential and its first and second derivatives. In: Sansò F, Rummel R (eds) Geodetic boundary value problems in view of the one centimeter geoid, lecture notes in earth sciences, vol 65. Springer-Verlag, Berlin, Heidelberg, pp 359–404

    Google Scholar 

  • Rummel R, Rapp RH (1976) The influence of the atmosphere on geoid and potential coefficient determinations from gravity data. J Geophys Res 81:5639–5642

    Article  Google Scholar 

  • Rummel R, Teunissen P (1988) Height datum definition, height datum connection and the role of the geodetic boundary value problem. Bull Géod 62:477–498

    Article  Google Scholar 

  • Rummel R, van Gelderen M (1995) Meissl scheme—spectral characteristics of physical geodesy. Manuscripta Geod 20:379–385

    Google Scholar 

  • Rummel R, Weijong Y, Stummer C (2011) GOCE gravitational gradiometry. J Geod 85:777–790

    Article  Google Scholar 

  • Sanchez L (2008) Approach for the establishment of a global vertical reference level. In: Xu P, Liu J, Dermanis A (eds) VI Hotine-Marussi symposium on theoretical and computational geodesy, IAG symposia, vol 132. Springer-Verlag, Berlin, Heidelberg, pp 119–125

    Google Scholar 

  • Sandwell DT, Smith WHF (2009) Global marine gravity from retracked Geosat and ERS-1 altimetry: ridge segmentation versus spreading rate. J Geophys Res B 114:B01411. doi:10.1029/2008JB006008

    Article  Google Scholar 

  • Sansò F (1986) Statistical methods in physical geodesy. In: Sünkel H (ed) Mathematical and numerical techniques in physical geodesy, lecture notes in earth sciences, vol 7. Springer-Verlag, Berlin, Heidelberg, pp 49–155

    Google Scholar 

  • Sansò F (1995) The long road from measurements to boundary value problems in physical geodesy. Manuscripta Geod 20:326–344

    Google Scholar 

  • Sansò F, Tscherning CC (2003) Fast spherical collocation: theory and examples. J Geod 77:101–112

    Article  Google Scholar 

  • Schwarz KP, Sideris MG, Forsberg R (1990) The use of FFT techniques in physical geodesy. Geophys J Int 100:485–514

    Article  Google Scholar 

  • Seitz K (1997) Ellipsoidische und topographische Effekte im geodätischen Randwertproblem. Deutsche Geod. Komm., Reihe C, Nr. 483, München

    Google Scholar 

  • Sideris MG (1987) Spectral methods for the numerical solution of Molodensky’s problem. UCSE Reports, No. 20024, Department of Surveying Engineering, The University of Calgary

    Google Scholar 

  • Sideris MG (1994) Regional geoid determination. In: Vanicek P, Christou NT (eds) Geoid and its geophysical interpretations. CRC Press, Inc, Boca Raton, FL, USA, pp 77–94

    Google Scholar 

  • Sideris MG (2011a) Geoid determination, theory and principles. In: Gupta HK (ed) Encyclopedia of Solid Earth Geophysics. Springer-Verlag, Berlin, Heidelberg, pp 356–362

    Google Scholar 

  • Sideris MG (2011b) Geoid, computational method. In: Gupta HK (ed) Encyclopedia of Solid Earth Geophysics. Springer-Verlag, Berlin, Heidelberg, pp 366–371

    Google Scholar 

  • Sigl R (1985) Introduction to potential theory. Abacus Press in association with H. Wichmann Verlag

    Google Scholar 

  • Sjöberg L (1980) Least squares combination of satellite harmonics and integral formulas in physical geodesy. Gerlands Beitr. d. Geophysik 89:371–377

    Google Scholar 

  • Sjöberg L (1981) Least squares spectral combination of satellite and terrestrial data in physical geodesy. Annales de Géophysique 37:25–30

    Google Scholar 

  • Sjöberg LE (2003) A general model for modifying Stokes’ formula and its least-squares solution. J Geod 77:459–464

    Article  Google Scholar 

  • Sjöberg LE (2010) A strict formula for geoid-to-quasigeoid separation. J Geod 84:699–702

    Article  Google Scholar 

  • Sjöberg LE, Nahavandchi H (2000) The atmospheric geoid effects in Stokes’ formula. Geophys J Int 140:95–100

    Article  Google Scholar 

  • Smith DA, Roman DR (2001) GEOID99 and G99SSS: 1-arc-minute geoid models for the United States. J Geod 75:469–490

    Article  Google Scholar 

  • Smith D, Véronneau M, Roman D, Huang JL, Wang YM, Sideris M (2010) Towards the unification of the vertical datums over the North American continent. IAG Commission 1 symposium 2010, reference frames for applications in geosciences (REFAG2010), Marne-La-Vallée, France, 4–8 Oct 2010

    Google Scholar 

  • Steinberg G, Papo H (1998) Ellipsoidal heights: the future of vertical geodetic control. GPS World 9(2):41–43

    Google Scholar 

  • Strange WE (1982) An evaluation of orthometric height accuracy using bore hole gravimetry. Bull Géod 56:300–311

    Article  Google Scholar 

  • Sünkel H (1983) The geoid in Austria. In: Proceedings IAG symposia, IUGG XVIII General Assembly, Hamburg, FRG, 1983, vol 1. Report Department of Geodetic Science and Surveying, The Ohio State University, Columbus, Ohio, USA, pp 348–364

    Google Scholar 

  • Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins M (2004a) GRACE measurements of mass variability in the earth system. Science, vol 305, issue 5683, pp 503–505, 23 July 2004

    Google Scholar 

  • Tapley BD, Bettadpur S, Watkins M, Reigber C (2004b) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(9):L09607. doi:10.1029/2004GL019920

    Article  Google Scholar 

  • Tapley B, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Poole S (2007) The GGM03 mean earth gravity model from GRACE. Eos Trans. AGU, vol 88(52), Fall Meeting Supplement, Abstract G42A-03

    Google Scholar 

  • Tenzer R, Vaníček P, Santos M, Featherstone WE, Kuhn M (2005) The rigorous determination of orthometric heights. J Geod 79:82–92

    Article  Google Scholar 

  • Timmen L (2010) Absolute and relative gravimetry. In: Xu G (ed) Sciences of geodesy—I, advances and future directions. Springer-Verlag, Berlin, pp 1–48

    Google Scholar 

  • Torge W (1977) Untersuchungen zur Höhen- und Geoidbestimmung im dreidimensionalen Testnetz Westharz. Zeitschrift f. Verm.wesen (zfv) 102:173–186

    Google Scholar 

  • Torge W (1982) Zur Geoidbestimmung im Meeresbereich. In: Geodaesia Universalis—Festschrift Karl Rinner zum 70. Geburtstag, Mitt. Geod. Inst. T.U. Graz, Folge 40, pp 346–355

    Google Scholar 

  • Torge W (1989) Gravimetry. W. de Gruyter, Berlin

    Google Scholar 

  • Torge W (2001) Geodesy, 3rd edn. W. de Gruyter, Berlin

    Book  Google Scholar 

  • Torge W, Denker H (1998) The European geoid—development over more than 100 years and present status. In: Vermeer M, Ádám J (eds) Second continental workshop on the geoid in Europe, Proceedings Rep. Finnish Geod. Inst., vol 98, issue 4, Masala, pp 47–52

    Google Scholar 

  • Torge W, Röder RH, Schnüll M, Wenzel H-G, Faller JE (1987) First results with the transportable absolute gravity meter JILAG-3. Bull Géod 61:161–176

    Article  Google Scholar 

  • Torge W, Weber G, Wenzel H-G (1982) Computation of a high resolution European geoid (EGG1). In: Proceedings of 2nd international symposium on the geoid in Europe and Mediterranian area, Rome. Istituto Geografico Militare, Italy, Florence, pp 437–460

    Google Scholar 

  • Tscherning CC (1976a) Computation of second-order derivatives of the normal potential based on the representation by a Legendre series. Manuscripta Geod 1:71–92

    Google Scholar 

  • Tscherning CC (1976b) On the chain-rule method for computing potential derivatives. Manuscripta Geod 1:125–141

    Google Scholar 

  • Tscherning CC (1985) Local approximation of the gravity potential by least squares collocation. In: Schwarz KP (ed) Proceedings of international summer school on local gravity field approximation, Beijing, 21 Aug–4 Sept 1984, The University of Calgary, Publ. 60003, pp 277−361

    Google Scholar 

  • Tscherning CC (1986) Functional methods for gravity field approximation. In: Sünkel H (ed) Mathematical and numerical techniques in physical geodesy. Lecture notes in earth sciences, vol 7. Springer-Verlag, Berlin, Heidelberg, pp 3–47

    Google Scholar 

  • Tscherning CC (1994) Geoid determination by least-squares collocation using GRAVSOFT. In: International school for the determination and use of the geoid. Lecture notes, Milan, 10–15 Oct 1994, pp 135–164

    Google Scholar 

  • Tscherning CC (2004) A discussion of the use of spherical approximation or no approximation in gravity field modeling with emphasis on unsolved problems in least-squares collocation. In: Sansò F (ed) V Hotine-Marussi symposium on mathematical geodesy, IAG symposia, vol 127. Springer-Verlag, Berlin, Heidelberg, pp 184–188

    Google Scholar 

  • Tscherning CC, Rapp RH (1974) Closed covariance expressions for gravity anomalies, geoid undulations, and deflections of the vertical implied by anomaly degree variance models. Report Department of Geodetic Science, no. 208, The Ohio State University, Columbus, Ohio, USA

    Google Scholar 

  • USGS (2007) Global 30 arc-second elevation data set GTOPO30. U.S. Geological Survey, Center for Earth Resources Observation and Science (EROS). http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html

  • Vaníček P (1998) The height of reason (a letter to the editor). GPS World 9(4):14

    Google Scholar 

  • Véronneau M, Duvai R, Huang J (2006) A gravimetric geoid model as a vertical datum in Canada. Geomatica 60:165–172

    Google Scholar 

  • Véronneau M, Huang J (2007) The Canadian gravimetric geoid model 2005 (CGG2005). Report, Geodetic Survey Division, Earth Sciences Sector, Natural Resources Canada, Ottawa, Canada

    Google Scholar 

  • Wahr JM (2009) Time variable gravity from satellites. In: Herring T (vol ed) Treatise on geophysics, vol 3, geodesy. Elsevier, Amsterdam, pp 213–237

    Google Scholar 

  • Wang YM, Saleh J, Li X, Roman DR (2011) The US Gravimetric geoid of 2009 (USGG2009): model development and evaluation. J Geod. doi:10.1007/s00190-011-0506-7

    Google Scholar 

  • Weber G (1984) Hochauflösende Freiluftanomalien und gravimetrische Lotabweichungen für Europa. Wiss. Arb. d. Fachr. Verm.wesen d. Univ. Hannover, Nr. 135, Hannover

    Google Scholar 

  • Wenzel HG (1981) Zur Geoidbestimmung durch Kombination von Schwereanomalien und einem Kugelfunktionsmodell mit Hilfe von Integralformeln. Zeitschrift f. Verm.wesen (zfv) 106:102–111

    Google Scholar 

  • Wenzel HG (1982) Geoid computation by least squares spectral combination using integral formulas. In: Proceedings of general meeting of the IAG, Tokyo, 7–15 May 1982, pp 438–453

    Google Scholar 

  • Wenzel H-G (1985) Hochauflösende Kugelfunktionsmodelle für das Gravitationspotential der Erde. Wiss. Arb. d. Fachr. Verm.wesen d. Univ. Hannover, Nr. 137, Hannover

    Google Scholar 

  • Wenzel H-G (1989) On the definition and numerical computation of free air gravity anomalies. Bull. d’Information 64. Bureau Gravimetrique Internationale, Toulouse, France, pp 23−40

    Google Scholar 

  • Wichiencharoen C (1982) The indirect effects on the computation of geoid undulations. Report Department of Geodetic Science, no. 336, The Ohio State University, Columbus, Ohio, USA

    Google Scholar 

  • Wildermann E (1988) Untersuchungen zur lokalen Schwerefeldbestimmung aus heterogenen Daten dargestellt am Beispiel der Geotraverse venezolanische Anden. Wiss. Arb. d. Fachr. Verm.wesen d. Univ. Hannover, Nr. 155, Hannover

    Google Scholar 

  • Wolf H (1974) Über die Einführung von Normalhöhen. Zeitschrift f. Verm.wesen (zfv) 99:1–5

    Google Scholar 

  • Wolf KI (2007) Kombination globaler Potentialmodelle mit terrestrischen Schweredaten für die Berechnung der zweiten Ableitungen des Gravitationspotentials in Satellitenbahnhöhe. Wiss. Arb. d. Fachr. Geodäsie u. Geoinformatik d. Leibniz Univ. Hannover, Nr. 264, Hannover

    Google Scholar 

  • Wolf KI (2008) Evaluation regionaler Quasigeoidlösungen in synthetischer Umgebung. Zeitschrift f. Verm.wesen (zfv) 133:52–63

    Google Scholar 

  • Wunsch C, Gaposchkin EM (1980) On using satellite altimetry to determine the general circulation of the oceans with application to geoid improvement. Rev Geophys 18:725–745

    Article  Google Scholar 

  • Zeman A (1987) Definition of the normal gravity field including the constant part of tides. Stud Geophys Geod 31:113–120

    Article  Google Scholar 

  • Ziebart MK, Iliffe JC, Forsberg R, Strykowski G (2008) Convergence of the UK OSGM05 GRACE-based geoid and the UK fundamental benchmark network. J Geophys Res B 113:B12401. doi:10.1029/2007JB004959

    Article  Google Scholar 

  • Zilkoski DB, Richards JH, Young GM (1995) A summary of the results of the general adjustment of the North American vertical datum of 1988. Allg Verm Nachr 102:310–321

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiner Denker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Denker, H. (2013). Regional Gravity Field Modeling: Theory and Practical Results. In: Xu, G. (eds) Sciences of Geodesy - II. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28000-9_5

Download citation

Publish with us

Policies and ethics