Skip to main content

Exact Algorithms for General CNF SAT

  • Living reference work entry
  • First Online:
Encyclopedia of Algorithms
  • 239 Accesses

Years and Authors of Summarized Original Work

1998; Hirsch 2003; Schuler

Problem Definition

The satisfiability problem (SAT) for Boolean formulas in conjunctive normal form (CNF) is one of the first NP-complete problems [2, 13]. Since its NP-completeness currently leaves no hope for polynomial-time algorithms, the progress goes by decreasing the exponent. There are several versions of this parametrized problem that differ in the parameter used for the estimation of the running time.

Problem 1 (SAT). 

INPUT: :

Formula F in CNF containing n variables, m clauses, and l literals in total.

OUTPUT: :

“Yes” if F has a \(\underline{satisfying\ assignment}\), i.e., a substitution of Boolean values for the variables that makes F true. “No” otherwise.

The bounds on the running time of SAT algorithms can be thus given in the form \(\vert F\vert ^{O(1)} \cdot \alpha ^{n}\), \(\vert F\vert ^{O(1)} \cdot \beta ^{m}\), or \(\vert F\vert ^{O(1)} \cdot \gamma ^{l}\), where \(\vert F\vert\)is the length...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Recommended Reading

  1. Calabro C, Impagliazzo R, Paturi R (2006) A duality between clause width and clause density for SAT. In: Proceedings of the 21st annual IEEE conference on computational complexity (CCC 2006), Prague. IEEE Computer Society, pp 252–260

    Google Scholar 

  2. Cook SA (2006) The complexity of theorem proving procedures. In: Proceedings of the third annual ACM symposium on theory of computing, Shaker Heights, May 1971. ACM, pp 151–158

    Google Scholar 

  3. Dantsin E, Hirsch EA (2008) Worst-case upper bounds. In: Biere A, Heule MJH, van Maaren H, Walsh T (eds) Handbook of satisfiability. Frontiers in artificial intelligence and applications, vol 185. IOS Press, Amsterdam/Washington, DC, p 980. ISBN:978-1-58603-929-5, ISSN:0922-6389

    Google Scholar 

  4. Dantsin E, Goerdt A, Hirsch EA, Kannan R, Kleinberg J, Papadimitriou C, Raghavan P, Schöning U (2002) A deterministic \((2 - 2/(k + 1))^{n}\) algorithm for k-SAT based on local search. Theor Comput Sci 289(1):69–83

    Article  MATH  Google Scholar 

  5. Dantsin E, Hirsch EA, Wolpert A (2006) Clause shortening combined with pruning yields a new upper bound for deterministic SAT algorithms. In: Proceedings of CIAC-2006, Rome. Lecture notes in computer science, vol 3998. Springer, Berlin, pp 60–68

    Google Scholar 

  6. Davis M, Putnam H (1960) A computing procedure for quantification theory. J ACM 7: 201–215

    Article  MathSciNet  MATH  Google Scholar 

  7. Davis M, Logemann G, Loveland D (1962) A machine program for theorem-proving. Commun ACM 5:394–397

    Article  MathSciNet  MATH  Google Scholar 

  8. Hirsch EA (2000) New worst-case upper bounds for SAT. J Autom Reason 24(4):397–420

    Article  MATH  Google Scholar 

  9. Kojevnikov A, Kulikov A (2006) A new approach to proving upper bounds for MAX-2-SAT. In: Proceedings of the seventeenth annual ACM-SIAM symposium on discrete algorithms (SODA 2006), Miami. ACM/SIAM, pp 11–17

    Google Scholar 

  10. Kulikov A (2005) Automated generation of simplification rules for SAT and MAXSAT. In: Proceedings of the eighth international conference on theory and applications of satisfiability testing (SAT 2005), St. Andrews. Lecture notes in computer science, vol 3569. Springer, Berlin, pp 430–436

    Google Scholar 

  11. Kullmann O (1999) New methods for 3-{SAT} decision and worst-case analysis. Theor Comput Sci 223(1–2):1–72

    Article  MathSciNet  MATH  Google Scholar 

  12. Kullmann O, Luckhardt H (1998) Algorithms for SAT/TAUT decision based on various measures, 71pp. Preprint, http://cs-svr1.swan.ac.uk/csoliver/papers.html

  13. Levin LA (1973) Universal search problems. Probl Inf Trans 9(3):265–266. In Russian. English translation Trakhtenbrot BA (1984) A survey of russian approaches to perebor (Brute-force Search) algorithms. Ann Hist Comput 6(4):384–400

    Google Scholar 

  14. Pudlák P (1998) Satisfiability – algorithms and logic. In: Proceedings of the 23rd international symposium on mathematical foundations of computer science, MFCS’98. Lecture notes in computer science, Brno, vol 1450. Springer, Berlin, pp 129–141

    Google Scholar 

  15. Schuler R (2005) An algorithm for the satisfiability problem of formulas in conjunctive normal form. J Algorithms 54(1), 40–44

    Article  MathSciNet  MATH  Google Scholar 

  16. Wahlström M (2005) An algorithm for the SAT problem for formulae of linear length. In: Proceedings of the 13th annual European symposium on algorithms, ESA 2005. Lecture notes in computer science, Mallorca, vol 3669. Springer, Berlin, pp 107–118

    Google Scholar 

  17. Wang J (2002) Generating and solving 3-SAT. MSc thesis, Rochester Institute of Technology, Rochester

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward A. Hirsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Hirsch, E.A. (2014). Exact Algorithms for General CNF SAT. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, Boston, MA. https://doi.org/10.1007/978-3-642-27848-8_133-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27848-8_133-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Online ISBN: 978-3-642-27848-8

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics