Skip to main content

Pathomechanisms of Endogenously Aged Skin

  • Living reference work entry
  • First Online:
Textbook of Aging Skin

Abstract

In an ever-aging society a better understanding of the underlying mechanisms accompanying aging skin has become essential. Skin aging can be classified into light-induced aging (photoaging, exogenous aging) and endogenous aging. The latter occurs in nonexposed areas, which are not in direct contact with environmental factors such as ultraviolet (UV) and infrared (IR) irradiation, and is mainly attributed to genetic factors and alterations of the endocrine environment. In this chapter, new insights on the latest findings regarding the pathogenesis of endogenously aged skin are summarized, to what extent intrinsic factors may influence the progress of skin aging and what are the consequences on the morphology and physiology of skin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Diczfalusy E. The third age, the Third World and the third millennium. Contraception. 1996;53(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  2. Oeppen J, Vaupel JW. Demography. Broken limits to life expectancy. Science. 2002;296(5570):1029–31.

    Article  CAS  PubMed  Google Scholar 

  3. Aleksandrova S, Velkova A. Population ageing in the Balkan countries. Folia Med (Plovdiv). 2003;45(4):5–10.

    CAS  Google Scholar 

  4. Makrantonaki E, Zouboulis CC, William J. Cunliffe scientific awards. Characteristics and pathomechanisms of endogenously aged skin. Dermatology. 2007;214(4):352–60.

    Article  PubMed  Google Scholar 

  5. Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res. 1965;37:614–36.

    Article  CAS  PubMed  Google Scholar 

  6. Kosmadaki MG, Gilchrest BA. The role of telomeres in skin aging/photoaging. Micron. 2004;35(3):155–9.

    Article  CAS  PubMed  Google Scholar 

  7. Bodnar AG, Ouellette M, Frolkis M, et al. Extension of life-span by introduction of telomerase into normal human cells. Science. 1998;279(5349):349–52.

    Article  CAS  PubMed  Google Scholar 

  8. Smith JR, Pereira-Smith OM. Replicative senescence: implications for in vivo aging and tumor suppression. Science. 1996;273(5271):63–7.

    Article  CAS  PubMed  Google Scholar 

  9. Allsopp RC, Vaziri H, Patterson C, et al. Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci U S A. 1992;89(21):10114–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Michikawa Y, Mazzucchelli F, Bresolin N, et al. Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science. 1999;286(5440):774–9.

    Article  CAS  PubMed  Google Scholar 

  11. Miquel J. An update on the oxygen stress-mitochondrial mutation theory of aging: genetic and evolutionary implications. Exp Gerontol. 1998;33(1–2):113–26.

    Article  CAS  PubMed  Google Scholar 

  12. Benn PA. Specific chromosome aberrations in senescent fibroblast cell lines derived from human embryos. Am J Hum Genet. 1976;28(5):465–73.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Ly DH, Lockhart DJ, Lerner RA, et al. Mitotic misregulation and human aging. Science. 2000;287(5462):2486–92.

    Article  CAS  PubMed  Google Scholar 

  14. Gilchrest BA. In vitro assessment of keratinocyte aging. J Invest Dermatol. 1983;81(1 Suppl):184s–9.

    Article  CAS  PubMed  Google Scholar 

  15. Cristofalo VJ, Pignolo RJ. Replicative senescence of human fibroblast-like cells in culture. Physiol Rev. 1993;73(3):617–38.

    CAS  PubMed  Google Scholar 

  16. Gilchrest BA, Vrabel MA, Flynn E, et al. Selective cultivation of human melanocytes from newborn and adult epidermis. J Invest Dermatol. 1984;83(5):370–6.

    Article  CAS  PubMed  Google Scholar 

  17. Barja G. Free radicals and aging. Trends Neurosci. 2004;27(10):595–600.

    Article  CAS  PubMed  Google Scholar 

  18. Kohen R. Skin antioxidants: their role in aging and in oxidative stress – new approaches for their evaluation. Biomed Pharmacother. 1999;53(4):181–92.

    Article  CAS  PubMed  Google Scholar 

  19. Sohal RS, Weindruch R. Oxidative stress, caloric restriction, and aging. Science. 1996;273(5271):59–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Hensley K, Floyd RA. Reactive oxygen species and protein oxidation in aging: a look back, a look ahead. Arch Biochem Biophys. 2002;397(2):377–83.

    Article  CAS  PubMed  Google Scholar 

  21. Cuervo AM, Dice JF. How do intracellular proteolytic systems change with age? Front Biosci. 1998;3:d25–43.

    CAS  PubMed  Google Scholar 

  22. Lee CK, Klopp RG, Weindruch R, et al. Gene expression profile of aging and its retardation by caloric restriction. Science. 1999;285(5432):1390–3.

    Article  CAS  PubMed  Google Scholar 

  23. Kritchevsky D. Caloric restriction and experimental carcinogenesis. Hybrid Hybridomics. 2002;21(2):147–51.

    Article  PubMed  Google Scholar 

  24. Lu J, Xie L, Sylvester J, et al. Different gene expression of skin tissues between mice with weight controlled by either calorie restriction or physical exercise. Exp Biol Med (Maywood). 2007;232(4):473–80.

    CAS  Google Scholar 

  25. Harley CB. Telomere loss: mitotic clock or genetic time bomb? Mutat Res. 1991;256(2–6):271–82.

    Article  CAS  PubMed  Google Scholar 

  26. Wu KJ, Grandori C, Amacker M, et al. Direct activation of TERT transcription by c-MYC. Nat Genet. 1999;21(2):220–4.

    Article  CAS  PubMed  Google Scholar 

  27. Feng J, Funk WD, Wang SS, et al. The RNA component of human telomerase. Science. 1995;269(5228):1236–41.

    Article  CAS  PubMed  Google Scholar 

  28. Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994;266(5193):2011–5.

    Article  CAS  PubMed  Google Scholar 

  29. Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature. 1990;345(6274):458–60.

    Article  CAS  PubMed  Google Scholar 

  30. Hastie ND, Dempster M, Dunlop MG, et al. Telomere reduction in human colorectal carcinoma and with ageing. Nature. 1990;346(6287):866–8.

    Article  CAS  PubMed  Google Scholar 

  31. Guarente L, Kenyon C. Genetic pathways that regulate ageing in model organisms. Nature. 2000;408(6809):255–62.

    Article  CAS  PubMed  Google Scholar 

  32. Jazwinski SM. The RAS, genes: a homeostatic device in Saccharomyces cerevisiae longevity. Neurobiol Aging. 1999;20(5):471–8.

    Article  CAS  PubMed  Google Scholar 

  33. Johnson TE, Henderson S, Murakami S, et al. Longevity genes in the nematode Caenorhabditis elegans also mediate increased resistance to stress and prevent disease. J Inherit Metab Dis. 2002;25(3):197–206.

    Article  CAS  PubMed  Google Scholar 

  34. Rogina B, Reenan RA, Nilsen SP, et al. Extended life-span conferred by cotransporter gene mutations in Drosophila. Science. 2000;290(5499):2137–40.

    Article  CAS  PubMed  Google Scholar 

  35. Tatar M, Kopelman A, Epstein D, et al. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science. 2001;292(5514):107–10.

    Article  CAS  PubMed  Google Scholar 

  36. Arking R, Buck S, Hwangbo DS, et al. Metabolic alterations and shifts in energy allocations are corequisites for the expression of extended longevity genes in Drosophila. Ann N Y Acad Sci. 2002;959:251–62 (Discussion 463–255).

    Article  CAS  PubMed  Google Scholar 

  37. Kuro-o M, Matsumura Y, Aizawa H, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390(6655):45–51.

    Article  CAS  PubMed  Google Scholar 

  38. Yu CE, Oshima J, Fu YH, et al. Positional cloning of the Werner’s syndrome gene. Science. 1996;272(5259):258–62.

    Article  CAS  PubMed  Google Scholar 

  39. Rattan SI. Aging, anti-aging, and hormesis. Mech Ageing Dev. 2004;125(4):285–9.

    Article  CAS  PubMed  Google Scholar 

  40. Partridge L, Gems D. A lethal side-effect. Nature. 2002;418(6901):921.

    Article  CAS  PubMed  Google Scholar 

  41. Gilchrest BA, Garmyn M, Yaar M. Aging and photoaging affect gene expression in cultured human keratinocytes. Arch Dermatol. 1994;130(1):82–6.

    Article  CAS  PubMed  Google Scholar 

  42. Yaar M, Eller MS, Bhawan J, et al. In vivo and in vitro SPRR1 gene expression in normal and malignant keratinocytes. Exp Cell Res. 1995;217(2):217–26.

    Article  CAS  PubMed  Google Scholar 

  43. Seshadri T, Campisi J. Repression of c-fos transcription and an altered genetic program in senescent human fibroblasts. Science. 1990;247(4939):205–9.

    Article  CAS  PubMed  Google Scholar 

  44. Hara E, Yamaguchi T, Nojima H, et al. Id-related genes encoding helix-loop-helix proteins are required for G1 progression and are repressed in senescent human fibroblasts. J Biol Chem. 1994;269(3):2139–45.

    CAS  PubMed  Google Scholar 

  45. Simard M, Manthos H, Giaid A, et al. Ontogeny of growth hormone receptors in human tissues: an immunohistochemical study. J Clin Endocrinol Metab. 1996;81(8):3097–102.

    CAS  PubMed  Google Scholar 

  46. Noda A, Ning Y, Venable SF, et al. Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp Cell Res. 1994;211(1):90–8.

    Article  CAS  PubMed  Google Scholar 

  47. Jenkins G. Molecular mechanisms of skin ageing. Mech Ageing Dev. 2002;123(7):801–10.

    Article  CAS  PubMed  Google Scholar 

  48. Uitto J. Biochemistry of the elastic fibers in normal connective tissues and its alterations in diseases. J Invest Dermatol. 1979;72(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  49. Fisher GJ, Kang S, Varani J, et al. Mechanisms of photoaging and chronological skin aging. Arch Dermatol. 2002;138(11):1462–70.

    Article  CAS  PubMed  Google Scholar 

  50. Chung JH, Kang S, Varani J, et al. Decreased extracellular-signal-regulated kinase and increased stress-activated MAP kinase activities in aged human skin in vivo. J Invest Dermatol. 2000;115(2):177–82.

    Article  CAS  PubMed  Google Scholar 

  51. Xia Z, Dickens M, Raingeaud J, et al. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science. 1995;270(5240):1326–31.

    Article  CAS  PubMed  Google Scholar 

  52. Verheij M, Bose R, Lin XH, et al. Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature. 1996;380(6569):75–9.

    Article  CAS  PubMed  Google Scholar 

  53. Zeng G, McCue HM, Mastrangelo L, et al. Endogenous TGF-beta activity is modified during cellular aging: effects on metalloproteinase and TIMP-1 expression. Exp Cell Res. 1996;228(2):271–6.

    Article  CAS  PubMed  Google Scholar 

  54. Wick M, Burger C, Brusselbach S, et al. A novel member of human tissue inhibitor of metalloproteinases (TIMP) gene family is regulated during G1 progression, mitogenic stimulation, differentiation, and senescence. J Biol Chem. 1994;269(29):18953–60.

    CAS  PubMed  Google Scholar 

  55. Mori Y, Hatamochi A, Arakawa M, et al. Reduced expression of mRNA for transforming growth factor beta (TGF beta) and TGF beta receptors I and II and decreased TGF beta binding to the receptors in in vitro-aged fibroblasts. Arch Dermatol Res. 1998;290(3):158–62.

    Article  CAS  PubMed  Google Scholar 

  56. Kyng KJ, May A, Kolvraa S, et al. Gene expression profiling in Werner syndrome closely resembles that of normal aging. Proc Natl Acad Sci U S A. 2003;100(21):12259–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Lener T, Moll PR, Rinnerthaler M, et al. Expression profiling of aging in the human skin. Exp Gerontol. 2006;41(4):387–97.

    Article  CAS  PubMed  Google Scholar 

  58. Makrantonaki E, Brink TC, Zampeli V, Elewa RM, Mlody B, Hossini AM, Hermes B, Krause U, Knolle J, Abdallah M, Adjaye J, Zouboulis CC. Identification of biomarkers of human skin ageing in both genders. Wnt signalling – a label of skin ageing? PLoS One. 2012;7(11):e50393.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Gronniger E, Weber B, Heil O, Peters N, Stab F, Wenck H, Korn B, Winnefeld M, Lyko F. Aging and chronic sun exposure cause distinct epigenetic changes in human skin. PLoS Genet. 2010;6(5), e1000971.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Chondrogianni N, Voutetakis K, Kapetanou M, Delitsikou V, Papaevgeniou N, Sakellari M, Lefaki M, Filippopoulou K, Gonos ES. Proteasome activation: an innovative promising approach for delaying aging and retarding age-related diseases. Ageing Res Rev. 2015;23(Pt A):37–55.

    Article  CAS  PubMed  Google Scholar 

  61. Mohrin M, Chen D. Sirtuins, tissue maintenance, and tumorigenesis. Genes Cancer. 2013;4(3–4):76–81.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Gilchrest BA, Campisi J, Chang HY, Fisher GJ, Kulesz-Martin MF. Montagna symposium 2014-skin aging: molecular mechanisms and tissue consequences. J Invest Dermatol. 2015;135(4):950–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Wallace DC. Mitochondrial defects in neurodegenerative disease. Ment Retard Dev Disabil Res Rev. 2001;7(3):158–66.

    Article  CAS  PubMed  Google Scholar 

  64. Tatar M, Bartke A, Antebi A. The endocrine regulation of aging by insulin-like signals. Science. 2003;299(5611):1346–51.

    Article  CAS  PubMed  Google Scholar 

  65. Conboy IM, Conboy MJ, Wagers AJ, et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature. 2005;433(7027):760–4.

    Article  CAS  PubMed  Google Scholar 

  66. Makrantonaki E, Adjaye J, Herwig R, et al. Age-specific hormonal decline is accompanied by transcriptional changes in human sebocytes in vitro. Aging Cell. 2006;5(4):331–44.

    Article  CAS  PubMed  Google Scholar 

  67. Nesbit M, Nesbit HK, Bennett J, et al. Basic fibroblast growth factor induces a transformed phenotype in normal human melanocytes. Oncogene. 1999;18(47):6469–76.

    Article  CAS  PubMed  Google Scholar 

  68. Singh K, Maity P, Krug L, Meyer P, Treiber N, Lucas T, Basu A, Kochanek S, Wlaschek M, Geiger H, Scharffetter-Kochanek K. Superoxide anion radicals induce IGF-1 resistance through concomitant activation of PTP1B and PTEN. EMBO Mol Med. 2015;7(1):59–77.

    Article  PubMed Central  CAS  Google Scholar 

  69. Lewis DA, Travers JB, Somani AK, Spandau DF. The IGF-1/IGF-1R signaling axis in the skin: a new role for the dermis in aging-associated skin cancer. Oncogene. 2010;29(10):1475–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Laron Z. Effects of growth hormone and insulin-like growth factor 1 deficiency on ageing and longevity. Novartis Found Symp. 2002;242:125–37 (Discussion 137–142).

    Article  CAS  PubMed  Google Scholar 

  71. Carroll PV, Christ ER, Bengtsson BA, et al. Growth hormone deficiency in adulthood and the effects of growth hormone replacement: a review. Growth Hormone Research Society Scientific Committee. J Clin Endocrinol Metab. 1998;83(2):382–95.

    Article  CAS  PubMed  Google Scholar 

  72. Tomlinson JW, Holden N, Hills RK, et al. Association between premature mortality and hypopituitarism. West Midlands Prospective Hypopituitary Study Group. Lancet. 2001;357(9254):425–31.

    Article  CAS  PubMed  Google Scholar 

  73. Rudman D, Feller AG, Nagraj HS, et al. Effects of human growth hormone in men over 60 years old. N Engl J Med. 1990;323(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  74. Riedl M, Kotzmann H, Luger A. Growth hormone in the elderly man. Wien Med Wochenschr. 2001;151(18–20):426–9.

    CAS  PubMed  Google Scholar 

  75. Brincat MP. Hormone replacement therapy and the skin. Maturitas. 2000;35(2):107–17.

    Article  CAS  PubMed  Google Scholar 

  76. Fuchs KO, Solis O, Tapawan R, et al. The effects of an estrogen and glycolic acid cream on the facial skin of postmenopausal women: a randomised histologic study. Cutis. 2003;71(6):481–8.

    PubMed  Google Scholar 

  77. Sator PG, Schmidt JB, Sator MO, et al. The influence of hormone replacement therapy on skin ageing: a pilot study. Maturitas. 2001;39(1):43–55.

    Article  CAS  PubMed  Google Scholar 

  78. Schmidt JB, Binder M, Demschik G, et al. Treatment of skin aging with topical estrogens. Int J Dermatol. 1996;35(9):669–74.

    Article  CAS  PubMed  Google Scholar 

  79. Affinito P, Palomba S, Sorrentino C, et al. Effects of postmenopausal hypoestrogenism on skin collagen. Maturitas. 1999;33(3):239–47.

    Article  CAS  PubMed  Google Scholar 

  80. Makrantonaki E, Vogel K, et al. Interplay of IGF-I and 17beta-estradiol at age-specific levels in human sebocytes and fibroblasts in vitro. Exp Gerontol. 2008;43(10):939–46.

    Article  CAS  PubMed  Google Scholar 

  81. Makrantonaki E, Zouboulis CC. Skin alterations and diseases in advanced age. Drug Discov Today Dis Mec. 2008;5(2):e153–62.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos C. Zouboulis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Makrantonaki, E., Zouboulis, C.C. (2015). Pathomechanisms of Endogenously Aged Skin. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27814-3_9-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27814-3_9-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27814-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics