Skip to main content

Tomography

  • Living reference work entry
  • First Online:
Book cover Handbook of Mathematical Methods in Imaging
  • 468 Accesses

Abstract

We define tomography as the process of producing an image of a distribution (of some physical property) from estimates of its line integrals along a finite number of lines of known locations. We touch upon the computational and mathematical procedures underlying the data collection, image reconstruction, and image display in the practice of tomography. The emphasis is on reconstruction methods, especially the so-called series expansion reconstruction algorithms. We illustrate the use of tomography (including three-dimensional displays based on reconstructions) both in electron microscopy and in X-ray computerized tomography (CT), but concentrate on the latter. This is followed by a classification and discussion of reconstruction algorithms. In particular, we discuss how to evaluate and compare the practical efficacy of such algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Artzy, E., Frieder, G., Herman, G.T.: The theory, design, implementation and evaluation of a three-dimensional surface detection algorithm. Comput. Graph. Image Proc. 15, 1–24 (1981)

    Article  Google Scholar 

  2. Banhart, J.: Advanced Tomographic Methods in Materials Research and Engineering. Oxford University Press, Oxford (2008)

    Book  Google Scholar 

  3. Bracewell, R.N.: Strip integration in radio astronomy. Aust. J. Phys. 9, 198–217 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  4. Browne, J.A., De Pierro, A.R.: A row-action alternative to the EM algorithm for maximizing likelihood in emission tomography. IEEE Trans. Med. Imaging 15, 687–699 (1996)

    Article  Google Scholar 

  5. Censor, Y., Altschuler, M.D., Powlis, W.D.: On the use of Cimmino’s simultaneous projections method for computing a solution of the inverse problem in radiation therapy treatment planning. Inverse Prob. 4, 607–623 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Censor, Y., Chen, W., Combettes, P.L., Davidi, R., Herman G.T.: On the effectiveness of projection methods for convex feasibility problems with linear inequality constraints. Comput. Optim. Appl. 51, 1065–1088 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Censor, Y., Zenios, S.A.: Parallel Optimization: Theory, Algorithms and Applications. Oxford University Press, New York (1998)

    Google Scholar 

  8. Chen, L.S., Herman, G.T., Reynolds, R.A., Udupa, J.K.: Surface shading in the cuberille environment (erratum appeared in 6(2):67–69, 1986). IEEE Comput. Graph. Appl. 5(12), 33–43 (1985)

    Article  MATH  Google Scholar 

  9. Cormack, A.M.: Representation of a function by its line integrals, with some radiological applications. J. Appl. Phys. 34, 2722–2727 (1963)

    Article  MATH  Google Scholar 

  10. Crawford, C.R., King, K.F.: Computed-tomography scanning with simultaneous patient motion. Med. Phys. 17, 967–982 (1990)

    Article  Google Scholar 

  11. Crowther, R.A., DeRosier, D.J., Klug, A.: The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc. R. Soc. Lond. Ser.-A A317, 319–340 (1970)

    Article  Google Scholar 

  12. Davidi, R., Herman, G.T., Klukowska, J.: SNARK09: A Programming System for the Reconstruction of 2D Images from 1D Projections (2009). http://www.dig.cs.gc.cuny.edu/software/snark09

  13. DeRosier, D.J., Klug, A.: Reconstruction of three-dimensional structures from electron micrographs. Nature 217, 130–134 (1968)

    Article  Google Scholar 

  14. Edholm, P.R., Herman, G.T.: Linograms in image reconstruction from projections. IEEE Trans. Med. Imaging 6, 301–307 (1987)

    Article  Google Scholar 

  15. Edholm, P., Herman, G.T., Roberts, D.A.: Image reconstruction from linograms: implementation and evaluation. IEEE Trans. Med. Imaging 7, 239–246 (1988)

    Article  Google Scholar 

  16. Eggermont, P.P.B., Herman, G.T., Lent, A.: Iterative algorithms for large partitioned linear systems, with applications to image reconstruction. Linear Algebra Appl. 40, 37–67 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  17. Epstein, C.S.: Introduction to the Mathematics of Medical Imaging. 2nd edn. SIAM, Philadelphia (2007)

    Book  Google Scholar 

  18. Frank, J.: Electron Tomography: Methods for Three-Dimensional Visualization of Structures in the Cell, 2nd edn. Springer, New York (2006)

    Book  Google Scholar 

  19. Frank, J.: Three-Dimensional Electron Microscopy of Macromolecular Assemblies: Visualization of Biological Molecules in Their Native State. Oxford University Press, Oxford (2006)

    Book  Google Scholar 

  20. Gordon, R., Bender, R., Herman, G.T.: Algebraic Reconstruction Techniques (ART) for three-dimensional electron microscopy and X-ray photography. J. Theory Biol. 29, 471–481 (1970)

    Article  Google Scholar 

  21. Hanson, K.M.: Method of evaluating image-recovery algorithms based on task performance. J. Opt. Soc. Am. A 7, 1294–1304 (1990)

    Article  Google Scholar 

  22. Herman, G.T.: Advanced principles of reconstructing algorithms. In: Newton, T.H., Potts, D.G. (eds.) Radiology of Skull and Brain. Technical Aspects of Computed Tomography, vol. 5, pp. 3888–3903. C.V. Mosby Company, St. Louis (1981)

    Google Scholar 

  23. Herman, G.T.: Fundamentals of Computerized Tomography: Image Reconstruction from Projections, 2nd edn. Springer, Berlin (2009)

    Book  Google Scholar 

  24. Herman, G.T., Kuba, A.: Advances in Discrete Tomography and Its Applications. Birkhäuser, Boston (2007)

    Book  MATH  Google Scholar 

  25. Herman, G.T., Lent, A.: Iterative reconstruction algorithms. Comput. Biol. Med. 6, 273–294 (1976)

    Article  Google Scholar 

  26. Herman, G.T., Liu, H.K.: Three-dimensional display of human organs from computed tomograms. Comput. Graph. Image Proc. 9, 1–21 (1979)

    Article  Google Scholar 

  27. Herman, G.T., Meyer, L.B.: Algebraic reconstruction techniques can be made computationally efficient. IEEE Trans. Med. Imaging 12, 600–609 (1993)

    Article  Google Scholar 

  28. Herman, G.T., Naparstek, A.: Fast image reconstruction based on a Radon inversion formula appropriate for rapidly collected data. SIAM J. Appl. Math. 33, 511–533 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  29. Herman, G.T., Tuy, H.K., Langenberg, K.J., Sabatier, P.C.: Basic Methods of Tomography and Inverse Problems. Institute of Physics Publishing, Bristol (1988)

    Google Scholar 

  30. Herman, G.T., Garduño, E., Davidi, R., Censor, Y.: Superiorization: an optimization heuristic for medical physics. Med. Phys. 39, 5532–5546 (2012)

    Article  Google Scholar 

  31. Hounsfield, G.N.: Computerized transverse axial scanning tomography: Part I, description of the system. Br. J. Radiol. 46, 1016–1022 (1973)

    Article  Google Scholar 

  32. Hudson, H.M., Larkin, R.S.: Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans. Med. Imaging 13, 601–609 (1994)

    Article  Google Scholar 

  33. Kalender, W.A.: Computed Tomography: Fundamentals, System Technology, Image Quality, Applications, 2nd edn. Wiley-VCH (2006)

    Google Scholar 

  34. Kalender, W.A., Seissler, W., Klotz, E., Vock, P.: Spiral volumetric CT with single-breath-hold technique, continuous transport, and continuous scanner rotation. Radiology 176, 181–183 (1990)

    Article  Google Scholar 

  35. Katsevich, A.: Theoretically exact filtered backprojection-type inversion algorithm for spiral CT. SIAM J. Appl. Math. 62, 2012–2026 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kinahan, P.E., Matej, S., Karp, J.P., Herman, G.T., Lewitt, R.M.: Comparison of transform and iterative reconstruction techniques for a volume-imaging PET scanner with a large axial acceptance angle. IEEE Trans. Nucl. Sci. 42, 2181–2287 (1995)

    Article  Google Scholar 

  37. Klukowska, J., Davidi, R., Herman, G.T.: SNARK09 – a software package for the reconstruction of 2D images from 1D projections. Comput. Methods Programs Biomed. 110, 424–440 (2013)

    Article  Google Scholar 

  38. Lauterbur, P.C.: Medical imaging by nuclear magnetic resonance zeugmatography. IEEE Trans. Nucl. Sci. 26, 2808–2811 (1979)

    Article  Google Scholar 

  39. Levitan, E., Herman, G.T.: A maximum a posteriori probability expectation maximization algorithm for image reconstruction in emission tomography. IEEE Trans. Med. Imaging 6, 185–192 (1987)

    Article  Google Scholar 

  40. Lewitt, R.M.: Multidimensional digital image representation using generalized Kaiser–Bessel window functions. J. Opt. Soc. Am. A 7, 1834–1846 (1990)

    Article  Google Scholar 

  41. Lewitt, R.M.: Alternatives to voxels for image representation in iterative reconstruction algorithms. Phys. Med. Biol. 37, 705–716 (1992)

    Article  Google Scholar 

  42. Lorensen, W., Cline, H.: Marching cubes: a high-resolution 3D surface reconstruction algorithm. Comput. Graph. 21(4), 163–169 (1987)

    Article  Google Scholar 

  43. Maki, D.D., Birnbaum, B.A., Chakraborty, D.P., Jacobs, J.E., Carvalho, B.M., Herman, G.T.: Renal cyst pseudo-enhancement: beam hardening effects on CT numbers. Radiology 213, 468–472 (1999)

    Article  Google Scholar 

  44. Marabini, R., Rietzel, E., Schroeder, R., Herman, G.T., Carazo, J.M.: Three-dimensional reconstruction from reduced sets of very noisy images acquired following a single-axis tilt schema: application of a new three-dimensional reconstruction algorithm and objective comparison with weighted backprojection. J. Struct. Biol. 120, 363–371 (1997)

    Article  Google Scholar 

  45. Marabini, R., Herman, G.T., Carazo, J.-M.: 3D reconstruction in electron microscopy using ART with smooth spherically symmetric volume elements (blobs). Ultramicroscopy 72, 53–65 (1998)

    Article  Google Scholar 

  46. Matej, S., Lewitt, R.M.: Practical consideration for 3D image-reconstruction using spherically-symmetrical volume elements. IEEE Trans. Med. Imaging 15, 68–78 (1996)

    Article  Google Scholar 

  47. Matej, S., Herman, G.T., Narayan, T.K., Furuie, S.S., Lewitt, R.M., Kinahan, P.E.: Evaluation of task-oriented performance of several fully 3D PET reconstruction algorithms. Phys. Med. Biol. 39, 355–367 (1994)

    Article  Google Scholar 

  48. Matej, S., Furuie, S.S., Herman, G.T.: Relevance of statistically significant differences between reconstruction algorithms. IEEE Trans. Image Proc. 5, 554–556 (1996)

    Article  Google Scholar 

  49. Narayan, T.K., Herman, G.T.: Prediction of human observer performance by numerical observers: an experimental study. J. Opt. Soc. Am. A 16, 679–693 (1999)

    Article  Google Scholar 

  50. Natterer, F., Wübbeling, F.: Mathematical Methods in Image Reconstruction. SIAM, Philadelphia (2001)

    Book  MATH  Google Scholar 

  51. Poulsen, H.F.: Three-Dimensional X-Ray Diffraction Microscopy: Mapping Polycrystals and Their Dynamics. Springer, Berlin (2004)

    Book  Google Scholar 

  52. Radon, J.: Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Ber. Verh. Sächs. Akad. Wiss., Leipzig, Math. Phys. Kl. 69, 262–277 (1917)

    Google Scholar 

  53. Ramachandran, G.N., Lakshminarayanan, A.V.: Three-dimensional reconstruction from radiographs and electron micrographs: application of convolutions instead of Fourier transforms. Proc. Natl. Acad. Sci. USA 68, 2236–2240 (1971)

    Article  MathSciNet  Google Scholar 

  54. Scheres, S.H.W., Gao, H., Valle, M., Herman, G.T., Eggermont, P.P.B., Frank, J., Carazo, J.-M.: Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nat. Methods 4, 27–29 (2007)

    Article  Google Scholar 

  55. Scheres, S.H.W., Nuñez-Ramirez, R., Sorzano, C.O.S., Carazo, J.M., Marabini, R.: Image processing for electron microscopy single-particle analysis using XMIPP. Nat. Protoc. 3, 977–990 (2008)

    Article  Google Scholar 

  56. Shepp, L.A., Logan, B.F.: The Fourier reconstruction of a head section. IEEE Trans. Nucl. Sci. 21, 21–43 (1974)

    Article  Google Scholar 

  57. Shepp, L.A., Vardi, Y.: Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imaging 1, 113–122 (1982)

    Article  Google Scholar 

  58. Sorzano, C.O.S., Marabini, R., Boisset, N., Rietzel, E., Schröder, R., Herman, G.T., Carazo, J.M.: The effect of overabundant projection directions on 3D reconstruction algorithms. J. Struct. Biol. 133, 108–118 (2001)

    Article  Google Scholar 

  59. Udupa, J.K., Herman, G.T.: 3D Imaging in Medicine, 2nd edn. CRC Press, Boca Raton (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabor T. Herman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Herman, G.T. (2014). Tomography. In: Scherzer, O. (eds) Handbook of Mathematical Methods in Imaging. Springer, New York, NY. https://doi.org/10.1007/978-3-642-27795-5_16-5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27795-5_16-5

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-3-642-27795-5

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics