Skip to main content

Mathematical Properties Relevant to Geomagnetic Field Modeling

  • Living reference work entry
  • First Online:
Book cover Handbook of Geomathematics

Abstract

Geomagnetic field modeling consists in converting large numbers of magnetic observations into a linear combination of elementary mathematical functions that best describes those observations. The set of numerical coefficients defining this linear combination is then what one refers to as a geomagnetic field model. Such models can be used to produce maps. More importantly, they form the basis for the geophysical interpretation of the geomagnetic field, by providing the possibility of separating fields produced by various sources and extrapolating those fields to places where they cannot be directly measured. In this chapter, the mathematical foundation of global (as opposed to regional) geomagnetic field modeling is reviewed, and the spatial modeling of the field in spherical coordinates is focused. Time can be dealt with as an independent variable and is not explicitly considered. The relevant elementary mathematical functions are introduced, their properties are reviewed, and how they can be used to describe the magnetic field in a source-free (such as the Earth’s neutral atmosphere) or source-dense (such as the ionosphere) environment is explained. Completeness and uniqueness properties of those spatial mathematical representations are also discussed, especially in view of providing a formal justification for the fact that geomagnetic field models can indeed be constructed from ground-based and satellite-born observations, provided those reasonably approximate the ideal situation where relevant components of the field can be assumed perfectly known on spherical surfaces or shells at the time for which the model is to be recovered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abramowitz M, Stegun IA (1964) Handbook of mathematical functions. Dover, New York

    MATH  Google Scholar 

  • Alberto P, Oliveira O, Pais MA (2004) On the non-uniqueness of main geomagnetic field determined by surface intensity measurements: the Backus problem. Geophys J Int 159: 558–554. 10.1111/j.1365-246X.2004.02413.x

    Google Scholar 

  • Backus GE (1968) Applications of a non-linear boundary value problem for Laplace’s equation to gravity and geomagnetic intensity surveys. Q J Mech Appl Math 21:195–221

    Article  MATH  MathSciNet  Google Scholar 

  • Backus GE (1970) Non-uniqueness of the external geomagnetic field determined by surface intensity measurements. J Geophys Res 75(31):6339–6341

    Article  Google Scholar 

  • Backus GE (1974) Determination of the external geomagnetic field from intensity measurements. Geophys Res Lett 1(1):21

    Article  Google Scholar 

  • Backus G (1986) Poloidal and toroidal fields in geomagnetic field modeling. Rev Geophys 24:75–109

    Article  MathSciNet  Google Scholar 

  • Backus G, Parker R, Constable C (1996) Foundations of geomagnetism. Cambridge University Press, New York

    Google Scholar 

  • Barraclough DR, Nevitt C (1976) The effect of observational errors on geomagnetic field models based solely on total-intensity measurements. Phys Earth Planet Int 13:123–131

    Article  Google Scholar 

  • Blakely RJ (1995) Potential theory in gravity and magnetic applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bloxham J (1985) Geomagnetic secular variation. PhD thesis, Cambridge University

    Google Scholar 

  • Dahlen F, Tromp J (1998) Theoretical global seismology. Princeton University Press, Princeton

    Google Scholar 

  • Edmonds A (1996) Angular momentum in quantum mechanics. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Elsasser W (1946) Induction effects in terrestrial magnetism. Part I. Theory. Phys Rev 69(3–4):106–116

    MATH  MathSciNet  Google Scholar 

  • Ferrers NM (1877) An elementary treatise on spherical harmonics and subjects connected with them. Macmillan, London

    MATH  Google Scholar 

  • Friis-Christensen E, Lühr H, Hulot G (2006) Swarm: a constellation to study the Earth’s magnetic field. Earth Planets Space 58:351–358

    Article  Google Scholar 

  • Friis-Christensen E, Lühr H, Hulot G, Haagmans R, Purucker M (2009) Geomagnetic research from space. Eos 90:25

    Article  Google Scholar 

  • Gauss CF (1839) Allgemeine Theorie des Erdmagnetismus. Resultate aus den Beobachtungen des Magnetischen Vereins im Jahre 1838. Göttinger Magnetischer Verein, Leipzig

    Google Scholar 

  • Goldie AHR, Joyce JW (1940) In: Proceedings of the 1939 Washington Assembly of the Association of Terrestrial Magnetism and Electricity of the International Union of Geodesy and Geophysics vol 11(6). Neill & Co, Edinburgh

    Google Scholar 

  • Granzow DK (1983) Spherical harmonic representation of the magnetic field in the presence of a current density. Geophys J R Astron Soc 74:489–505

    Google Scholar 

  • Harrison CGA (1987) The crustal field. In: Jacobs JA (ed) Geomagnetism, vol 1. Academic, London, pp 513–610

    Google Scholar 

  • Holme R, Bloxham J (1995) Alleviation of the backus effect in geomagnetic field modelling. Geophys Res Lett 22:1641–1644

    Article  Google Scholar 

  • Holme R, James MA, Lühr H (2005) Magnetic field modelling from scalar-only data: resolving the Backus effect with the equatorial electrojet. Earth Planets Space 57:1203–1209

    Article  Google Scholar 

  • Hulot G, Khokhlov A, Le Mouël JL (1997) Uniqueness of mainly dipolar magnetic fields recovered from directional data. Geophys J Int 129:347–354

    Article  Google Scholar 

  • Hulot G, Sabaka TJ, Olsen N (2007) The present field. In: Kono M (ed) Treatise on geophysics, vol 5. Elsevier, Amsterdam

    Google Scholar 

  • Jackson J (1998) Classical electrodynamics. Wiley, New York

    Google Scholar 

  • Jackson A, Finlay CC (2007) Geomagnetic secular variation and its application to the core. In: Kono M, (ed) Treatise on geophysics, vol 5. Elsevier, Amsterdam

    Google Scholar 

  • Jackson A, Jonkers ART, Walker MR (2000) Four centuries of geomagnetic secular variation from historical records. Philos Trans R Soc Lond A 358:957–990

    Article  Google Scholar 

  • Kellogg OD (1954) Foundations of potential theory. Dover, New York

    Google Scholar 

  • Khokhlov A, Hulot G, Le Mouël JL (1997) On the Backus effect – I. Geophys J Int 130:701–703

    Article  Google Scholar 

  • Khokhlov A, Hulot G, Le Mouël JL (1999) On the Backus effect – II. Geophys J Int 137:816–820

    Article  Google Scholar 

  • Kono M (1976) Uniqueness problems in the spherical analysis of the geomagnetic field direction data. J Geomagn Geoelectr 28:11–29

    Article  Google Scholar 

  • Langel RA (1987) The main field. In: Jacobs JA (ed) Geomagnetism, vol 1. Academic, London, pp 249–512

    Google Scholar 

  • Langel RA, Hinze WJ (1998) The magnetic field of the Earth’s lithosphere: the satellite perspective. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lesur V, Wardinski I, Rother M, Mandea M (2008) GRIMM: the GFZ reference internal magnetic model based on vector satellite and observatory data. Geophys J Int 173:382–294

    Article  Google Scholar 

  • Lorrain P, Corson D (1970) Electromagnetic fields and waves. WH Freeman, San Francisco

    Google Scholar 

  • Lowes FJ (1966) Mean-square values on sphere of spherical harmonic vector fields. J Geophys Res 71:2179

    Article  Google Scholar 

  • Lowes FJ (1974) Spatial power spectrum of the main geomagnetic field, and extrapolation to the core. Geophys J R Astron Soc 36:717–730

    Article  Google Scholar 

  • Lowes FJ (1975) Vector errors in spherical harmonic analysis of scalar data. Geophys J R Astron Soc 42:637–651

    Article  MATH  Google Scholar 

  • Lowes FJ, De Santis A, Duka B (1995) A discussion of the uniqueness of a Laplacian potential when given only partial information on a sphere. Geophys J Int 121:579–584

    Article  Google Scholar 

  • Lühr H, Maus S, Rother M (2002) First in-situ observation of night-time F region currents with the CHAMP satellite. Geophys Res Lett 29(10):127.1–127.4. 10.1029/2001 GL 013845

    Article  Google Scholar 

  • Maeda H, Iyemori T, Araki T, Kamei T (1982) New evidence of a meridional current system in the equatorial ionosphere. Geophys Res Lett 9:337–340

    Article  Google Scholar 

  • Malin S (1987) Historical introduction to geomagnetism. In: Jacobs JA (ed) Geomagnetism, vol 1. Academic, London, pp 1–49

    Google Scholar 

  • Mauersberger P (1956) Das Mittel der Energiedichte des geomagnetischen Hauptfeldes an der Erdoberfläche und seine säkulare Änderung. Gerl Beitr Geophys 65:207–215

    Google Scholar 

  • Maus S (2007) CHAMP magnetic mission. In: Gubbins D, Herrero-Bervera E (eds) Encyclopedia of geomagnetism and paleomagnetism. Springer, Heidelberg

    Google Scholar 

  • Maus S, Lühr H (2006) A gravity-driven electric current in the Earth’s ionosphere identified in champ satellite magnetic measurements. Geophys Res Lett 33:L02812. doi:10.1029/2005GL024436

    Article  Google Scholar 

  • Maus S, Yin F, Lühr H, Manoj C, Rother M, Rauberg J, Michaelis I, Stolle C, Müller R (2008) Resolution of direction of oceanic magnetic lineations by the sixth-generation lithospheric magnetic field model from CHAMP satellite magnetic measurements. Geochem Geophys Geosyst 9(7):Q07021

    Google Scholar 

  • Merrill R, McElhinny M (1983) The Earth’s magnetic field. Academic, London

    Google Scholar 

  • Merrill R, McFadden P, McElhinny M (1998) The magnetic field of the Earth: paleomagnetism, the core, and the deep mantle. Academic, London

    Google Scholar 

  • Mie G (1908) Considerations on the optic of turbid media, especially colloidal metal sols. Ann Phys (Leipzig) 25:377–442

    Article  MATH  Google Scholar 

  • Morse P, Feshbach H (1953) Methods of theoretical physics. International series in pure and applied physics. McGraw-Hill, New York

    Google Scholar 

  • Olsen N (1997) Ionospheric F region currents at middle and low latitudes estimated from Magsat data. J Geophys Res 102(A3):4563–4576

    Article  Google Scholar 

  • Olsen N, Mandea M, Sabaka TJ, Tøffner-Clausen L (2009) CHAOS-2-a geomagnetic field model derived from one decade of continuous satellite data. Geophys J Int 199(3):1477–1487. doi:10.1111/j.1365-246X.2009.04386.x

    Article  Google Scholar 

  • Proctor MRE, Gubbins D (1990) Analysis of geomagnetic directional data. Geophys J Int 100:69–77

    Article  Google Scholar 

  • Purucker M, Whaler K (2007) Crustal magnetism. In: Kono M (ed) Treatise on geophysics, vol 5. Elsevier, Amsterdam, pp 195–235

    Chapter  Google Scholar 

  • Richmond AD (1995) Ionospheric electrodynamics using magnetic Apex coordinates. J Geomagn Geoelectr 47:191–212

    Article  Google Scholar 

  • Sabaka TJ, Olsen N, Langel RA (2002) A comprehensive model of the quiet-time near-Earth magnetic field: phase 3. Geophys J Int 151:32–68

    Article  Google Scholar 

  • Sabaka TJ, Olsen N, Purucker ME (2004) Extending comprehensive models of the Earth’s magnetic field with Ørsted and CHAMP data. Geophys J Int 159:521–547. doi:10.1111/j.1365-246X.2004.02421.x

    Article  Google Scholar 

  • Schmidt A (1935) Tafeln der Normierten Kugelfunktionen. Engelhard-Reyher Verlag, Gotha

    MATH  Google Scholar 

  • Stern DP (1976) Representation of magnetic fields in space. Rev Geophys 14:199–214

    Article  Google Scholar 

  • Stern DP, Bredekamp JH (1975) Error enhancement in geomagnetic models derived from scalar data. J Geophys Res 80:1776–1782

    Article  Google Scholar 

  • Stern DP, Langel RA, Mead GD (1980) Backus effect observed by Magsat. Geophys Res Lett 7:941–944

    Article  Google Scholar 

  • Stolle C, Lühr H, Rother M, Balasis G (2006) Magnetic signatures of equatorial spread F, as observed by the CHAMP satellite. J Geophys Res 111:A02304. doi:10.1029/2005JA011184

    Google Scholar 

  • Thomson AWP, Lesur V (2007) An improved geomagnetic data selection algorithm for global geomagnetic field modelling. Geophys J Int 169(3):951–963

    Article  Google Scholar 

  • Ultré-Guérard P, Hamoudi M, Hulot G (1998) Reducing the Backus effect given some knowledge of the dip-equator. Geophys Res Lett 22(16):3201–3204

    Article  Google Scholar 

  • Walker AD (1992) Comment on “Non-uniqueness of the external geomagnetic field determined by surface intensity measurements” by Georges E. Backus. J Geophys Res 97(B10):13991

    Google Scholar 

  • Watson GN (1966) A treatise on the theory of Bessel function. Cambridge University Press, London

    Google Scholar 

  • Winch D, Ivers D, Turner J, Stening R (2005) Geomagnetism and Schmidt quasi-normalization. Geophys J Int 160(2):487–504

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terence J. Sabaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Sabaka, T.J., Hulot, G., Olsen, N. (2013). Mathematical Properties Relevant to Geomagnetic Field Modeling. In: Freeden, W., Nashed, M., Sonar, T. (eds) Handbook of Geomathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27793-1_17-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27793-1_17-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27793-1

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics