Skip to main content

Techniques and Kinetics of Hemodiafiltration

  • Chapter
Modeling and Control of Dialysis Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 405))

Abstract

Medium–long-term application of on-line high-efficiency HDF compared to low- and high-flux HD results in enhanced removal and lower basal levels of small, medium and protein-bound uremic solutes, some of which are retained as markers or causative agents of several uremic derangements, mainly inflammation, secondary hyperparathyroidism, dyslipidemia and cardiovascular disease. Probably, many of the benefits attributed to HDF potentially result from a general reduction of the uremic toxicity. This might be the link with the clinical benefits reported in patients undergoing chronic HDF which eventually contribute to improving patients survival, as suggested by published observational studies. However, In the absence of large randomized, prospective studies, it is reasonable to conclude that online HDF is a logical and safe therapy effective in maintaining the life and wellbeing of dialysis patients. Knowledge of the performance of materials, apparatus and devices used in HDF, and study of the solute transport mechanisms with the aid of modelling simulation will help to optimize this technique and obtain additional clinical benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahrenholz, P., Winkler, R.E., Ramlow, W., et al.: On-line hemodiafiltration with pre- and postdilution: a comparison of efficacy. Int. J. Artif. Organs. 20(2), 81–90 (1997)

    Google Scholar 

  • Altieri, P., Sorba, G., Bolasco, P., et al.: Predilution haemofiltration–the Second Sardinian Multicentre Study: comparisons between haemofiltration and haemodialysis during identical Kt/V and session times in a long-term cross-over study. Nephrol. Dial. Transplant. 16(6), 1207–1213 (2001)

    Article  Google Scholar 

  • Bammens, B., Evenepoel, P., Keuleers, H., et al.: Free serum concentrations of the protein-bound retention solute p-cresol predict mortality in hemodialysis patients. Kidney Int. 69(6), 1081–1087 (2006)

    Article  Google Scholar 

  • Bammens, B., Evenepoel, P., Verbeke, K., Vanrenterghem, Y.: Removal of the protein-bound solute p-cresol by convective transport: a randomized crossover study. Am. J. Kidney Dis. 44(2), 278–285 (2004)

    Article  Google Scholar 

  • Beerenhout, C.H., Luik, A.J., Jeuken-Mertens, S.G., et al.: Pre-dilution on-line haemofiltration vs low-flux haemodialysis: a randomized prospective study. Nephrol. Dial. Transplant. 20(6), 1155–1163 (2005)

    Article  Google Scholar 

  • Bergstrom, J., Wehle, B.: No change in corrected beta 2-microglobulin concentration after cuprophane haemodialysis. Lancet 1(8533), 628–629 (1987)

    Article  Google Scholar 

  • Block, G.A., Klassen, P.S., Lazarus, J.M., et al.: Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J. Am. Soc. Nephrol. 15(8), 2208–2218 (2004)

    Article  Google Scholar 

  • Bonomini, M., Ballone, E., Di Stante, S., et al.: Removal of uraemic plasma factor(s) using different dialysis modalities reduces phosphatidylserine exposure in red blood cells. Nephrol. Dial. Transplant. 19(1), 68–74 (2004)

    Article  Google Scholar 

  • Borrelli, S., Minutolo, R., De Nicola, L., et al.: Intradialytic changes of plasma amino acid levels: effect of hemodiafiltration with endogenous reinfusion versus acetate-free biofiltration. Blood Purif. 30(3), 166–171 (2010)

    Article  Google Scholar 

  • Bosch, T., Schmidt, B., Samtleben, W., Gurland, H.J.: Effect of protein adsorption on diffusive and convective transport through polysulfone membranes. Contrib. Nephrol. 46, 14–22 (1985)

    Google Scholar 

  • Bouman, C.S., van Olden, R.W., Stoutenbeek, C.P.: Cytokine filtration and adsorption during pre- and postdilution hemofiltration in four different membranes. Blood Purif. 16(5), 261–268 (1998)

    Article  Google Scholar 

  • Bowry, S.K., Ronco, C.: Surface topography and surface elemental composition analysis of Helixone, a new high-flux polysulfone dialysis membrane. Int. J. Artif. Organs. 24(11), 757–764 (2001)

    Google Scholar 

  • Calo, L.A., Naso, A., Carraro, G., et al.: Effect of haemodiafiltration with online regeneration of ultrafiltrate on oxidative stress in dialysis patients. Nephrol. Dial. Transplant. 22(5), 1413–1419 (2007)

    Article  Google Scholar 

  • Canaud, B., Bragg-Gresham, J.L., Marshall, M.R., et al.: Mortality risk for patients receiving hemodiafiltration versus hemodialysis: European results from the DOPPS. Kidney Int. 69(11), 2087–2093 (2006)

    Article  Google Scholar 

  • Carracedo, J., Merino, A., Nogueras, S., et al.: On-line hemodiafiltration reduces the proinflammatory CD14+CD16+ monocyte-derived dendritic cells: A prospective, crossover study. J. Am. Soc. Nephrol. 17(8), 2315–2321 (2006)

    Article  Google Scholar 

  • Chauveau, P., Nguyen, H., Combe, C., et al.: Dialyzer membrane permeability and survival in hemodialysis patients. Am. J. Kidney D. 45(3), 565–571 (2005)

    Article  Google Scholar 

  • Chauveau, P., Poignet, J.L., Kuno, T., et al.: Phosphate removal rate: a comparative study of five high-flux dialysers. Nephrol. Dial. Transplant. 6(suppl. 2), 114–115 (1991)

    Google Scholar 

  • Cheung, A.K., Alford, M.F., Wilson, M.M., et al.: Urea movement across erythrocyte membrane during artificial kidney treatment. Kidney Int. 23(6), 866–869 (1983)

    Article  Google Scholar 

  • Cheung, A.K., Rocco, M.V., Yan, G., et al.: Serum beta-2 microglobulin levels predict mortality in dialysis patients: results of the HEMO study. J. Am. Soc. Nephrol. 17(2), 546–555 (2006)

    Article  Google Scholar 

  • Clark, W.R., Hamburger, R.J., Lysaght, M.J.: Effect of membrane composition and structure on solute removal and biocompatibility in hemodialysis. Kidney Int. 56(6), 2005–2015 (1999a)

    Article  Google Scholar 

  • Clark, W.R., Leypoldt, J.K., Henderson, L.W., et al.: Quantifying the effect of changes in the hemodialysis prescription on effective solute removal with a mathematical model. J. Am. Soc. Nephrol. 10(3), 601–609 (1999b)

    Google Scholar 

  • Clark, W.R., Macias, W.L., Molitoris, B.A., Wang, N.H.: Membrane ad-sorption of beta 2-microglobulin: equilibrium and kinetic characterization. Kidney Int. 46(4), 1140–1146 (1994)

    Article  Google Scholar 

  • Clark, W.R., Macias, W.L., Molitoris, B.A., Wang, N.H.: Plasma protein adsorption to highly permeable hemodialysis membranes. Kidney Int. 48(2), 481–488 (1995)

    Article  Google Scholar 

  • Colton, C.K., Henderson, L.W., Ford, C.A., Lysaght, M.J.: Kinetics of hemodiafiltration. I. In vitro transport characteristics of a hollow-fiber blood ultrafilter. J. Lab. Clin. Med. 85(3), 355–371 (1975)

    Google Scholar 

  • Colton, C.K., Lysaght, M.J.: Membranes for hemodialysis. In: Jacobs, C., Kjellstrand, C.M., Koch, K.M., Winchester, J.F. (eds.) Replacement of Renal Function by Dialysis, pp. 103–113. Kluwer Academics, New York (1966)

    Google Scholar 

  • Covic, A., Kothawala, P., Bernal, M., et al.: Systematic review of the evidence underlying the association between mineral metabolism disturbances and risk of all-cause mortality, cardiovascular mortality and cardiovascular events in chronic kidney disease. Nephrol. Dial. Transplant. 24(5), 1506–1523 (2009)

    Article  Google Scholar 

  • Davenport, A., Gardner, C., Delaney, M., et al.: The effect of dialysis modality on phosphate control: haemodialysis compared to haemodiafiltration. The Pan Thames Renal Audit. Nephrol. Dial. Transplant. 25(3), 897–901 (2010)

    Article  Google Scholar 

  • David, S., Cambi, V.: Hemofiltration: predilution versus postdilution. Contrib. Nephrol. 96, 77–85 (1992)

    Google Scholar 

  • Deguchi, T., Isozaki, K., Yousuke, K., et al.: Involvement of organic anion transporters in the efflux of uremic toxins across the blood-brain barrier. J. Neurochem. 96(4), 1051–1059 (2006)

    Article  Google Scholar 

  • Delmez, J.A., Yan, G., Bailey, J., et al.: Cerebrovascular disease in maintenance hemodialysis patients: results of the HEMO Study. Am. J. Kidney Dis. 47(1), 131–138 (2006)

    Article  Google Scholar 

  • Depner, T.A., Cheer, A.: Modeling urea kinetics with two vs. three BUN measurements. A critical comparison. ASAIO Trans. 35(3), 499–502 (1989)

    Article  Google Scholar 

  • DeSmet, R., Dhondt, A., Eloot, S., et al.: Effect of the super-flux cellulose triacetate dialyser membrane on the removal of non-protein-bound and protein-bound uraemic solutes. Nephrol. Dial. Transplant. 22(7), 2006–2012 (2007)

    Article  Google Scholar 

  • DeSmet, R., VanKaer, J., VanVlem, B., et al.: Toxicity of free p-cresol: a prospective and cross-sectional analysis. Clin. Chem. 49(3), 470–478 (2003)

    Article  Google Scholar 

  • Donauer, J., Schweiger, C., Rumberger, B., et al.: Reduction of hypotensive side effects during online-haemodiafiltration and low temperature haemodialysis. Nephrol. Dial. Transplant. 18(8), 1616–1622 (2003)

    Article  Google Scholar 

  • Dorson Jr., W.J., Markovitz, M.: A pulsating ultrafiltration artificial kidney. Chem. Eng. Prog. Symp. Ser., 85–89 (1968)

    Google Scholar 

  • Dou, L., Bertrand, E., Cerini, C., et al.: The uremic solutes pcresol and indoxyl sulfate inhibit endothelial proliferation and wound repair. Kidney Int. 65(2), 442–451 (2004)

    Article  Google Scholar 

  • Dou, L., Jourde-Chiche, N., Faure, V., et al.: The uremic solute indoxyl sulfate induces oxidative stress in endothelial cells. J. Thromb. Haemost. 5(6), 1302–1308 (2007)

    Article  Google Scholar 

  • Edelman, I.S., Leibman, J., O’meara, M.P., Birkenfeld, L.W.: Interrelations between serum sodium concentration, serum osmolarity and total exchangeable sodium, total exchangeable potassium and total body water. J. Clin. Invest. 37(9), 1236–1256 (1958)

    Article  Google Scholar 

  • Eiselt, J., Rajdl, D., Racek, J.: Asymmetric dimethylarginine in hemodialysis, hemodiafiltration, and peritoneal dialysis. Artif. Organs. 34(5), 420–425 (2010)

    Article  Google Scholar 

  • Eknoyan, G., Beck, G.J., Cheung, A.K., et al.: Effect of dialysis dose and membrane flux in maintenance hemodialysis. N. Engl. J. Med. 347(25), 2010–2019 (2002)

    Article  Google Scholar 

  • Feliciani, A., Riva, M.A., Zerbi, S., et al.: New strategies in haemodiafiltration (HDF): prospective comparative analysis between online mixed HDF and mid-dilution HDF. Nephrol. Dial. Transplant. 22(6), 1672–1679 (2007)

    Article  Google Scholar 

  • Filiopoulos, V., Hadjiyannakos, D., Metaxaki, P., et al.: Inflammation and oxidative stress in patients on hemodiafiltration. Am. J. Nephrol. 28(6), 949–957 (2008)

    Article  Google Scholar 

  • Fiore, G.B., Guadagni, G., Lupi, A., et al.: A new semiempirical mathematical model for prediction of internal filtration in hollow fiber hemodialyzers. Blood Purif. 24(5-6), 555–568 (2006)

    Article  Google Scholar 

  • Floege, J., Bartsch, A., Schulze, M., et al.: Clearance and synthesis rates of beta 2-microglobulin in patients undergoing hemodialysis and in normal subjects. J. Lab. Clin. Med. 118(2), 153–165 (1991)

    Google Scholar 

  • Floege, J., Granolleras, C., Deschodt, G., et al.: High-flux synthetic versus cellulosic membranes for beta 2- microglobulin removal during hemodialysis, hemodiafiltration and hemofiltration. Nephrol. Dial. Transplant. 4(7), 653–657 (1989)

    Google Scholar 

  • Floege, J., Wilks, M., Shaldon, S., et al.: Beta 2-microglobulin kinetics during haemofiltration. Nephrol. Dial. Transplant. 3(6), 784–789 (1988)

    Google Scholar 

  • Frost, T.H., Kerr, D.N.: Kinetics of hemodialysis: a theoretical study of the removal of solutes in chronic renal failure compared to normal health. Kidney Int. 12(1), 41–50 (1977)

    Article  Google Scholar 

  • Fry, A.C., Singh, D.K., Chandna, S.M., Farrington, K.: Relative impor-tance of residual renal function and convection in determining beta-2-microglobulin levels in high-flux haemodialysis and online haemodiafiltration. Blood Purif. 25(3), 295–302 (2007)

    Article  Google Scholar 

  • Funck-Brentano, J.L., Sausse, A., Man, N.K., et al.: A new method of hemodialysis combining a high permeability membrane for the medium molecules and a dialysis bath in a closed circuit. In: Proc. Eur. Dial. Transplant. Assoc., vol. 9, pp. 55–66 (1972)

    Google Scholar 

  • Ghezzi, P.M., Botella, J., Sartoris, A.M., et al.: Use of the ultrafiltrate obtained in two-chamber (PFD) hemodiafiltration as replacement fluid. Experimental ex vivo and in vitro study. Int. J. Artif. Organs. 14(6), 327–334 (1991)

    Google Scholar 

  • Gil, C., Lucas, C., Possante, C., et al.: Online haemodiafiltration decreases serum TNFalpha levels in haemodialysis patients. Nephrol. Dial. Transplant. 18(2), 447–448 (2003)

    Article  Google Scholar 

  • Gohl, H., Buck, R., Strathmann, H.: Basic features of the polyamide membranes. Contrib. Nephrol. 96, 1–25 (1992)

    Google Scholar 

  • Goldfarb, S., Golper, T.A.: Proinflammatory cytokines and hemofiltration membranes. J. Am. Soc. Nephrol. 5(2), 228–232 (1994)

    Google Scholar 

  • Gotch, F., Levin, N., Zasuwa, G., Tayeb, J.: Kinetics of beta-2-microglobulin in hemodialysis. Contrib. Nephrol. 74, 132–138 (1989)

    Google Scholar 

  • Gotch, F.A.: Kinetic Modeling in Hemodialysis. In: Nissenson, A.R., Fine, R.N., Gentile, D.E. (eds.) Clinical Dialysis, 3rd edn., pp. 156–189. East Norwalk, CT (1995)

    Google Scholar 

  • Gotch, F.A., Keen, M.: Kinetic Modeling in Hemodialysis. In: Nissenson, A.R., Fine, R.N. (eds.) Clinical Dialysis, 4th edn., pp. 153–203. McGraw-Hill, New York (2005)

    Google Scholar 

  • Gotch, F.A., Lam, M.A., Prowitt, M., Keen, M.: Preliminary clinical results with sodium-volume modeling of hemodialysis therapy. In: Proc. Clin. Dial. Transplant. Forum., vol. 10, pp. 12–17 (1980)

    Google Scholar 

  • Gotch, F.A., Panlilio, F., Sergeyeva, O., et al.: A kinetic model of inorganic phosphorus mass balance in hemodialysis therapy. Blood Purif. 21(1), 51–57 (2003)

    Article  Google Scholar 

  • Gotch, F.A., Sargent, J.A.: A mechanistic analysis of the National Cooperative Dialysis Study (NCDS). Kidney Int. 28(3), 526–534 (1985)

    Article  Google Scholar 

  • Grooteman, M., van der Dorpel, R., Bots. M., et al.: Online hemodiafiltrationversus low-flux hemodialysis: effects on all-cause mortality and cardiovascular events in a randomized controlled trial. The Convective Transport Study (CONTRAST). XLVIII ERA-EDTA Congress, Prague, June 23-26, Abstract # LBCT3 (2011)

    Google Scholar 

  • Gutzwiller, J.P., Schneditz, D., Huber, A.R., et al.: Increasing blood flow increases kt/V(urea) and potassium removal but fails to improve phosphate removal. Clin. Nephrol. 59(2), 130–136 (2003)

    Google Scholar 

  • Hauk, M., Kuhlmann, M.K., Riegel, W., Köhler, H.: In vivo effects of dialysate flow rate on Kt/V in maintenance hemodialysis patients. Am. J. Kidney D. 35(1), 105–111 (2000)

    Article  Google Scholar 

  • Heaf, J.G., Jensen, S.B., Jensen, K., et al.: The cellular clearance theory does not explain the post-dialytic small molecule rebound. Scand. J. Urol. Nephrol. 32(5), 350–355 (1998)

    Article  Google Scholar 

  • Henderson, L.W.: Peritoneal ultrafiltration dialysis: enhanced urea transfer using hypertonic peritoneal dialysis fluid. J. Clin. Invest. 45(6), 950–955 (1966)

    Article  Google Scholar 

  • Henderson, L.W.: Biophysics of ultrafiltration and hemofiltration. In: Maher, J.F. (ed.) Replacement of Renal Function by Dialysis, pp. 300–326. Kluwer Academic, Dordrecht (1989)

    Chapter  Google Scholar 

  • Henderson, L.W., Besarab, A., Michaels, A.: Blood purification by ultrafiltration and fluid replacement (diafiltration). Trans. Am. Soc. Artif. Intern. Organs. 13, 216–226 (1967)

    Google Scholar 

  • Henderson, L.W., Colton, C.K., Ford, C.A.: Kinetics of hemodiafiltration. II. Clinical characterization of a new blood cleansing modality. J. Lab. Clin. Med. 85(3), 372–391 (1975)

    Google Scholar 

  • Hoenich, N.A.: Membranes and filters for haemodiafiltration. Contrib. Nephrol. 158, 57–67 (2007)

    Article  Google Scholar 

  • House, A.A., Wells, G.A., Donnelly, J.G., et al.: Randomized trial of high-flux vs low-flux haemodialysis: effects on homocysteine and lipids. Nephrol. Dial. Transplant. 15(7), 1029–1034 (2000)

    Article  Google Scholar 

  • Hutchison, C.A., Bradwell, A.R., Cook, M., et al.: Treatment of acute renal failure secondary to multiple myeloma with chemotherapy and extended high cut-off hemodialysis. Clin. J. Am. Soc. Nephrol. 4(4), 745–754 (2009)

    Article  Google Scholar 

  • Jaber, B.L., Gonski, J.A., Cendoroglo, M., et al.: New polyether sulfone dialyzers attenuate passage of cytokine-inducing substances from pseudomonas aeruginosa contaminated dialysate. Blood Purif. 16(4), 210–219 (1998)

    Article  Google Scholar 

  • Jadoul, M., Ueda, Y., Yasuda, Y., et al.: Influence of hemodialysis membrane type on pentosidine plasma level, a marker of “carbonyl stress”. Kidney Int. 55(6), 2487–2492 (1999)

    Article  Google Scholar 

  • Jaffrin, M.Y., Ding, L.H., Laurent, J.M.: Simultaneous convective and diffusive mass transfers in a hemodialyser. J. Biomech. Eng. 112(2), 212–219 (1990)

    Article  Google Scholar 

  • Jenkins, R.D., Funk, J.E., Chen, B., Golper, T.A.: Operational instability in extracorporeal filtration of blood. Blood Purif. 10(5-6), 292–308 (1992)

    Article  Google Scholar 

  • Jindal, K.K., McDougall, J., Woods, B., et al.: A study of the basic principles determining the performance of several high-flux dialyzers. Am. J. Kidney Dis. 14(6), 507–511 (1989)

    Google Scholar 

  • Jirka, T., Cesare, S., Di Benedetto, A., et al.: Mortality risk for patients receiving hemodiafiltration versus hemodialysis. Kidney Int. 70(8), 1524 (2006)

    Article  Google Scholar 

  • Jorstad, S., Smeby, L.C., Balstad, T., Wideroe, T.E.: Generation and removal of anaphylatoxins during hemofiltration with five different membranes. Blood Purif. 6(6), 325–335 (1988)

    Article  Google Scholar 

  • Kaiser, J.P., Oppermann, M., Gotze, O., et al.: Significant reduction of factor D and immunosuppressive complement fragment Ba by hemofiltration. Blood Purif. 13(6), 314–321 (1995)

    Article  Google Scholar 

  • Kanamori, T., Sakai, K.: An estimate of beta 2-microglobulin deposition rate in uremic patients on hemodialysis using a mathematical kinetic model. Kidney Int. 47(5), 1453–1457 (1995)

    Article  Google Scholar 

  • Karamperis, N., Jensen, D., Sloth, E., Jensen, J.D.: Comparison of predilution hemodiafiltration and low-flux hemodialysis at temperature-controlled conditions using high calcium-ion concentration in the replacement and dialysis fluid. Clin. Nephrol. 67(4), 230–239 (2007)

    Google Scholar 

  • Karlsson, F.A., Groth, T., Sege, K., et al.: Turnover in humans of beta 2-microglobulin: the constant chain of HLA-antigens. Eur. J. Clin. Invest. 10(4), 293–300 (1980)

    Article  Google Scholar 

  • Kerr, P.G., Lo, A., Chin, M., Atkins, R.C.: Dialyzer performance in the clinic: comparison of six low-flux membranes. Artif. Organs. 23(9), 817–821 (1999)

    Article  Google Scholar 

  • Kim, S.T.: Characteristics of protein removal in hemodiafiltration. Contrib. Nephrol. 108, 23–37 (1994)

    Google Scholar 

  • Koda, Y., Nishi, S., Miyazaki, S., et al.: Switch from conventional to high-flux membrane reduces the risk of carpal tunnel syndrome and mortality of hemodialysis patients. Kidney Int. 52(4), 1096–1101 (1997)

    Article  Google Scholar 

  • Krane, V., Krieter, D.H., Olschewski, M., et al.: Dialyzer membrane characteristics and outcome of patients with type 2 diabetes on maintenance hemodialysis. Am. J. Kidney Dis. 49(2), 267–275 (2007)

    Article  Google Scholar 

  • Krieter, D.H., Collins, G., Summerton, J., et al.: Mid-dilution on-line haemodiafiltration in a standard dialyser configuration. Nephrol. Dial. Transplant. 20(1), 155–160 (2005a)

    Article  Google Scholar 

  • Krieter, D.H., Falkenhain, S., Chalabi, L., et al.: Clinical cross-over comparison of mid-dilution hemodiafiltration using a novel dialyzer concept and post-dilution hemodiafiltration. Kidney Int. 67(1), 349–356 (2005b)

    Article  Google Scholar 

  • Krieter, D.H., Hackl, A., Rodriguez, A., et al.: Protein-bound uraemic toxin removal in haemodialysis and post-dilution haemodiafiltration. Nephrol. Dial. Transplant. 25(1), 212–218 (2010)

    Article  Google Scholar 

  • Kuhlmann, M.K.: Phosphate elimination in modalities of hemodialysis and peritoneal dialysis. Blood Purif. 29(2), 137–144 (2010)

    Article  MathSciNet  Google Scholar 

  • Le Meur, Y., Lorgeot, V., Comte, L., et al.: Plasma levels and metabolism of AcSDKP in patients with chronic renal failure: relationship with erythropoietin requirements. Am. J. Kidney D. 38(3), 510–517 (2001)

    Article  Google Scholar 

  • Leber, H.W., Wizemann, V., Goubeaud, G., et al.: Hemodiafiltration: a new alternative to hemofiltration and conventional hemodialysis. Artif. Organs. 2(2), 150–153 (1978)

    Article  Google Scholar 

  • Lesaffer, G., De, S.R., Lameire, N., et al.: Intradialytic removal of protein-bound uraemic toxins: role of solute characteristics and of dialyser membrane. Nephrol. Dial. Transplant. 15(1), 50–57 (2000)

    Article  Google Scholar 

  • Leypoldt, J.K., Cheung, A.K., Deeter, R.B.: Single compartment models for evaluating beta 2-microglobulin clearance during hemodialysis. ASAIO J. 43(6), 904–909 (1997)

    Article  Google Scholar 

  • Leypoldt, J.K., Cheung, A.K., Deeter, R.B.: Rebound kinetics of beta2-microglobulin after hemodialysis. Kidney Int. 56(4), 1571–1577 (1999)

    Article  Google Scholar 

  • Leypoldt, J.K., Frigon, R.P., Henderson, L.W.: Macromolecular charge affects hemofilter solute sieving. ASAIO Trans. 32(1), 384–387 (1986)

    Google Scholar 

  • Lian, J.D., Cheng, C.H., Chang, Y.L., et al.: Clinical experience and model analysis on beta-2-microglobulin kinetics in high-flux hemodialysis. Artif. Organs. 17(9), 758–763 (1993)

    Article  Google Scholar 

  • Lin, C.L., Huang, C.C., Chang, C.T., et al.: Clinical improvement by increased frequency of on-line hemodialfiltration. Ren. Fail. 23(2), 193–206 (2001a)

    Article  Google Scholar 

  • Lin, C.L., Yang, C.W., Chiang, C.C., et al.: Long-term on-line hemo-diafiltration reduces predialysis beta-2-microglobulin levels in chronic hemodialysis patients. Blood Purif. 19(3), 301–307 (2001b)

    Article  Google Scholar 

  • Lin, C.L., Huang, C.C., Yu, C.C., et al.: Improved iron utilization and reduced erythropoietin resistance by on-line hemodiafiltration. Blood Purif. 20(4), 349–356 (2002)

    Article  Google Scholar 

  • Locatelli, F., Altieri, P., Andrulli, S., et al.: Hemofiltration and hemodiafiltration reduce intradialytic hypotension in ESRD. J. Am. Soc. Nephrol. 21(10), 1798–1807 (2010)

    Article  Google Scholar 

  • Locatelli, F., Marcelli, D., Conte, F., et al.: Comparison of mortality in ESRD patients on convective and diffusive extracorporeal treatments. The Registro Lombardo Dialisi e Trapianto. Kidney Int. 55(1), 286–293 (1999)

    Article  Google Scholar 

  • Locatelli, F., Martin-Malo, A., Hannedouche, T., et al.: Effect of membrane permeability on survival of hemodialysis patients. J. Am. Soc. Nephrol. 20(3), 645–654 (2009)

    Article  Google Scholar 

  • Locatelli, F., Mastrangelo, F., Redaelli, B., et al.: Effects of different membranes and dialysis technologies on patient treatment tolerance and nutritional parameters. The Italian Cooperative Dialysis Study Group. Kidney Int. 50(4), 1293–1302 (1996)

    Article  Google Scholar 

  • Lonnemann, G., Koch, K.M., Shaldon, S., Dinarello, C.A.: Studies on the ability of hemodialysis membranes to induce, bind, and clear human interleukin-1. J. Lab. Clin. Med. 112(1), 76–86 (1988)

    Google Scholar 

  • Lornoy, W., Becaus, I., Billiouw, J.M., et al.: Remarkable removal of beta-2-microglobulin by online hemodiafiltration. Am. J. Nephrol. 18(2), 105–108 (1998)

    Article  Google Scholar 

  • Lornoy, W., Becaus, I., Billiouw, J.M., et al.: Online haemodiafiltration. Remarkable removal of beta2-microglobulin. Long-term clinical observations. Nephrol. Dial. Transplant. 15(suppl. 1), 49–54 (2000)

    Article  Google Scholar 

  • Lornoy, W., De Meester, J., Becaus, I., et al.: Impact of convective flow on phosphorus removal in maintenance hemodialysis patients. J. Ren. Nutr. 16(1), 47–53 (2006)

    Article  Google Scholar 

  • Maduell, F., del Pozo, C., Garcia, H., et al.: Change from conventional haemodiafiltration to online haemodiafiltration. Nephrol. Dial. Transplant. 14(5), 1202–1207 (1999)

    Article  Google Scholar 

  • Maduell, F., Navarro, V., Cruz, M.C., et al.: Osteocalcin and myoglobin removal in on-line hemodiafiltration versus low- and high-flux hemodialysis. Am. J. Kidney D. 40(3), 582–589 (2002)

    Article  Google Scholar 

  • Maeda, K., Shinzato, T., Ota, T., et al.: Beta-2-microglobulin generation rate and clearance rate in maintenance hemodialysis patients. Nephron. 56(2), 118–125 (1990)

    Article  Google Scholar 

  • Malinow, M.R., Korzon, W.: An experimental method for obtaining an ultrafiltrate of the blood. J. Lab. Clin. Med. 32(4), 461–471 (1947)

    Google Scholar 

  • Man, N.K., Chauveau, P., Kuno, T., et al.: Phosphate removal during hemodialysis, hemodiafiltration, and hemofiltration. A reappraisal. ASAIO Trans. 37(3), M463–M465 (1991)

    Google Scholar 

  • Marinez de Francisco, A.L., Ghezzi, P.M., Brendolan, A., et al.: Hemodiafiltration with online regeneration of the ultrafiltrate. Kidney Int. Suppl. 76, S66–S71 (2000)

    Google Scholar 

  • McIntyre, C.W.: Haemodialysis-induced myocardial stunning in chronic kidney disease - a new aspect of cardiovascular disease. Blood Purif. 29(2), 105–110 (2010)

    Article  Google Scholar 

  • Meert, N., Eloot, S., Waterloos, M.A., et al.: Effective removal of protein-bound uraemic solutes by different convective strategies: a prospective trial. Nephrol. Dial. Transplant. 24(2), 562–570 (2009)

    Article  Google Scholar 

  • Meert, N., Waterloos, M.A., Van, L.M., et al.: Prospective evaluation of the change of predialysis protein-bound uremic solute concentration with postdilution online hemodiafiltration. Artif. Organs. 34(7), 580–585 (2010)

    Article  Google Scholar 

  • Meijers, B.K., Bammens, B., De Moor, B., et al.: Free p-cresol is associated with cardiovascular disease in hemodialysis patients. Kidney Int. 73(10), 1174–1180 (2008)

    Article  Google Scholar 

  • Minutolo, R., Bellizzi, V., Cioffi, M., et al.: Postdialytic rebound of serum phosphorus: pathogenetic and clinical insights. J. Am. Soc. Nephrol. 13(4), 1046–1054 (2002)

    Google Scholar 

  • Morti, S.M., Zydney, A.L.: Protein-membrane interactions during hemodialysis: effects on solute transport. ASAIO J. 44(4), 319–326 (1998)

    Article  Google Scholar 

  • Nolph, K., Felts, J., Moore, R., Van Stone, J.: Differences in the distribution of urea and creatinine between red cells and plasma in normal and azotemic blood as assessed by autoanalyzer and manual chemical methods. Int. Urol. Nephrol. 10(1), 59–64 (1978)

    Article  Google Scholar 

  • Odell, R.A., Slowiaczek, P., Moran, J.E., Schindhelm, K.: Beta 2-microglobulin kinetics in end-stage renal failure. Kidney Int. 39(5), 909–919 (1991)

    Article  Google Scholar 

  • Ok, E., Asci, G., Ok, E.S., et al.: Comparison of postdilution on-line hemodiafiltration and hemodialysis (Turkish HDF Study). XLVIII ERA-EDTA Congress, Prague, June 23-26, Abstract # LBCT2 (2011)

    Google Scholar 

  • Okuno, S., Ishimura, E., Kohno, K., et al.: Serum beta2-microglobulin level is a significant predictor of mortality in maintenance haemodialysis patients. Nephrol. Dial. Transplant. 24(2), 571–577 (2009)

    Article  Google Scholar 

  • Panichi, V., Rizza, G.M., Paoletti, S., et al.: Chronic inflammation and mortality in haemodialysis: effect of different renal replacement therapies. Results from the RISCAVID study. Nephrol. Dial. Transplant. 23(7), 2337–2343 (2008)

    Article  Google Scholar 

  • Pedrini, L.A., Cozzi, G., Faranna, P., et al.: Transmembrane pressure modulation in high-volume mixed hemodiafiltration to optimize efficiency and minimize protein loss. Kidney Int. 69(3), 573–579 (2006)

    Article  Google Scholar 

  • Pedrini, L.A., De Cristofaro, V., Pagliari, B., et al.: Optimization of convection on hemodiafiltration by transmembrane pressure monitoring and biofeedback. Contrib. Nephrol. (137), 254–259 (2002)

    Google Scholar 

  • Pedrini, L.A., De Cristofaro, V., Pagliari, B., Samà, F.: Mixed predilution and postdilution online hemodiafiltration compared with the traditional infusion modes. Kidney Int. 58(2), 2155–2165 (2000)

    Article  Google Scholar 

  • Pedrini, L.A., DeCristofaro, V.: On-line mixed hemodiafiltration with a feedback for ultrafiltration control: effect on middle-molecule removal. Kidney Int. 64(4), 1505–1513 (2003)

    Article  Google Scholar 

  • Pedrini, L.A., DeCristofaro, V., Comelli, M., et al.: Long-term effects of high-efficiency on-line haemodiafiltration on uraemic toxicity. A multicentre prospective randomized study. Nephrol. Dial. Transplant. (2011), doi: 10.1093/ndt/gfq761

    Google Scholar 

  • Pedrini, L.A., Feliciani, A., Zerbi, S., et al.: Optimization of mid-dilution haemodiafiltration: technique and performance. Nephrol. Dial. Transplant. 24(9), 2816–2824 (2009)

    Article  Google Scholar 

  • Pedrini, L.A., Zerbi, S.: Mixed-dilution hemodiafiltration. Contrib. Nephrol. 158, 123–130 (2007)

    Article  Google Scholar 

  • Pedrini, L.A., Zereik, S., Rasmy, S.: Causes, kinetics and clinical implications of post-hemodialysis urea rebound. Kidney Int. 34(6), 817–824 (1988)

    Article  Google Scholar 

  • Pellicano, R., Polkinghorne, K.R., Kerr, P.G.: Reduction in beta2-microglobulin with super-flux versus high-flux dialysis mem-branes: results of a 6-week, randomized, double-blind, crossover trial. Am. J. Kidney Dis. 52(1), 93–101 (2008)

    Article  Google Scholar 

  • Penne, E.L., van der Weerd, N.C., van den Dorpel, M.A., et al.: Short-term effects of online hemodiafiltration on phosphate control: a result from the randomized controlled Convective Transport Study (CONTRAST). Am. J. Kidney Dis. 55(1), 77–87 (2010)

    Article  Google Scholar 

  • Popovich, R.P., Hlavinka, D.J., Bomar, J.B., et al.: The consequences of physiological resistances on metabolite removal from the patient-artifical kidney system. Trans. Am. Soc. Artif. Intern. Organs. 21, 108–116 (1975)

    Google Scholar 

  • Quellhorst, E.: Long-term follow up in chronic hemofiltration. Int. J. Artif. Organs. 6(3), 115–120 (1983)

    Google Scholar 

  • Quellhorst, E., Fernandez, E., Scheler, F.: Treatment of uraemia using an ultrafiltration-filtration system. In: Proc. Eur. Dial. Transplant. Assoc., vol. 9, pp. 584–587 (1972)

    Google Scholar 

  • Ramirez, R., Carracedo, J., Merino, A., et al.: Microinflammation induces endothelial damage in hemodialysis patients: the role of convective transport. Kidney Int. 72(1), 108–113 (2007)

    Article  Google Scholar 

  • Rastogi, S.P., Frost, T., Anderson, J.: The significance of disequilibrium between body compartments in the treatment of chronic renal failure. In: Proc. Europ. Dial. Transplant. Assoc., vol. 5, pp. 102–115 (1968)

    Google Scholar 

  • Righetti, M., Filiberti, O., Ranghino, A., et al.: Internal hemodiafiltration versus low-flux bicarbonate dialysis: Results from a long-term prospective study. Int. J. Artif. Organs. 33(11), 796–802 (2010)

    Google Scholar 

  • Rockel, A., Hertel, J., Fiegel, P., et al.: Permeability and secondary membrane formation of a high flux polysulfone hemofilter. Kidney Int. 30(3), 429–432 (1986)

    Article  Google Scholar 

  • Ronco, C., Bowry, S.: Nanoscale modulation of the pore dimensions, size distribution and structure of a new polysulfone-based high-flux dialysis membrane. Int. J. Artif. Organs. 24(10), 726–735 (2001)

    Google Scholar 

  • Ronco, C., Breuer, B., Bowry, S.K.: Hemodialysis membranes for high-volume hemodialytic therapies: the application of nanotechnology. Hemodial. Int. 10(suppl. 1), S48–S50 (2006)

    Google Scholar 

  • Ronco, C., Crepaldi, C., Brendolan, A., et al.: Evolution of synthetic membranes for blood purification: the case of the Polyflux family. Nephrol. Dial. Transplant. 18(suppl. 7), vii10–vii20 (2003)

    Google Scholar 

  • Ronco, C., Heifetz, A., Fox, K., et al.: Beta 2-microglobulin removal by synthetic dialysis membranes. Mechanisms and kinetics of the molecule. Int. J. Artif. Organs. 20(3), 136–143 (1997)

    Google Scholar 

  • Santoro, A., Ferramosca, E., Mancini, E., et al.: Reverse mid-dilution: new way to remove small and middle molecules as well as phosphate with high intrafilter convective clearance. Nephrol. Dial. Transplant. 22(7), 2000–2005 (2007)

    Article  Google Scholar 

  • Santoro, A., Mancini, E., Bolzani, R., et al.: The Effect of On-line High-flux Hemofiltration Versus Low-flux Hemodialysis on Mortality in Chronic Kidney Failure: A Small Randomized Controlled Trial. Am. J. Kidney Dis. 52(3), 507–518 (2008)

    Article  Google Scholar 

  • Sargent, J.A., Gotch, F.A.: Mathematic modeling of dialysis therapy. Kidney Int. 18(suppl. 10), S2–S10 (1980)

    Google Scholar 

  • Sargent, J.A., Gotch, F.A.: Principles and biophysics of dialysis. In: Jacob, C., Kjellstrand, C.M., Koch, K.M., Winchester, J.F. (eds.) Replacement of Renal Function by Dialysis, 4th edn., pp. 188–230. Kluwer Academic Publiher, Dordrecht (1996)

    Google Scholar 

  • Sausse, A., Man, N.K., Funck-Brentano, J.L.: A mathematical approach to hemodialysis therapy. In: Proc. Eur. Soc. Artif. Intern. Organs., vol. 1, pp. 81–84 (1974)

    Google Scholar 

  • Schepers, E., Meert, N., Glorieux, G., et al.: Pcresylsulphate, the main in vivo metabolite of p-cresol, activates leucocyte free radical production. Nephrol. Dial. Transplant. 22(2), 592–596 (2007)

    Article  Google Scholar 

  • Schindhelm, K., Farrell, P.C.: Patient-hemodialyzer interactions. Trans. Am. Soc. Artif. Intern. Organs. 24, 357–366 (1978)

    Google Scholar 

  • Skalsky, M., Schindhelm, K., Farrell, P.C.: Creatinine transfer between red cells and plasma: a comparison between normal and uremic subjects. Nephron. 22(4-6), 514–521 (1978)

    Article  Google Scholar 

  • Spalding, E.M., Chamney, P.W., Farrington, K.: Phosphate kinetics during hemodialysis: Evidence for biphasic regulation. Kidney Int. 61(2), 655–667 (2002)

    Article  Google Scholar 

  • Sprenger, K.B., Kratz, W., Lewis, A.E., Stadtmüller, U.: Kinetic modeling of hemodialysis, hemofiltration, and hemodiafiltration. Kidney Int. 24(2), 143–151 (1983)

    Article  Google Scholar 

  • Stiller, S., Xu, X.Q., Gruner, N., et al.: Validation of a two-pool model for the kinetics of beta2-microglobulin. Int. J. Artif. Organs. 25(5), 411–420 (2002)

    Google Scholar 

  • Streicher, E., Schneider, H.: The development of a polysulfone membrane. A new perspective in dialysis? Contrib. Nephrol. 46, 1–13 (1985)

    Google Scholar 

  • Sugisaki, H., Onohara, M., Kunitomo, T.: Dynamic behavior of plasma phosphate in chronic dialysis patients. Trans. Am. Soc. Artif. Intern. Organs. 28, 302–307 (1982)

    Google Scholar 

  • Taki, K., Tsuruta, Y., Niwa, T.: Indoxyl sulfate and atherosclerotic risk factors in hemodialysis patients. Am. J. Nephrol. 27(1), 30–35 (2007)

    Article  Google Scholar 

  • Tetta, C., Ghezzi, P.M., De Nitti, C., et al.: Cianciavicchia D, Gervasio R. New options for on-line hemodiafiltration. Contrib. Nephrol. 137, 212–220 (2002)

    Article  Google Scholar 

  • The EBPG Expert Group on Haemodialysis. European Best Practice Guidelines for Haemodialysis. Part 1. Nephrol. Dial. Transplant. 17(suppl. 7) 16–31 (2002)

    Google Scholar 

  • Van Tellingen, A., Grooteman, M.P., Bartels, P.C., et al.: Long-term reduction of plasma homocysteine levels by super-flux dialyzers in hemodialysis patients. Kidney Int. 59(1), 342–347 (2001)

    Article  Google Scholar 

  • Van Ypersele de Strihou, C.: Beta 2-Microglobulin amyloidosis: effect of ESRF treatment modality and dialysis membrane type. Nephrol. Dial. Transplant. 11(suppl. 2), 147–149 (1996)

    Article  Google Scholar 

  • Vanholder, R., Baurmeister, U., Brunet, P., et al.: A bench to bedside view of uremic toxins. J. Am. Soc. Nephrol. 19(5), 863–870 (2008)

    Article  Google Scholar 

  • Vanholder, R., De Smet, R., Glorieux, G., et al.: Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int. 63(5), 1934–1943 (2003)

    Article  Google Scholar 

  • Vaslaki, L., Major, L., Berta, K., et al.: Online haemodiafiltration versus haemodialysis: stable haematocrit with less erythropoietin and improvement of other relevant blood parameters. Blood Purif. 24(2), 163–173 (2006)

    Article  Google Scholar 

  • Vilar, E., Fry, A.C., Wellsted, D., et al.: Long-term outcomes in online hemodiafiltration and high-flux hemodialysis: a comparative analysis. Clin. J. Am. Soc. Nephrol. 4(12), 1944–1953 (2009)

    Article  Google Scholar 

  • Vilker, V.L., Colton, C.K., Smith, K.A.: Concentration polarization in protein ultrafiltration. Am. Inst. Chem. Enginr. 47, 632 (1981)

    Google Scholar 

  • Vilker, V.L., Colton, C.K., Smith, K.A., Green, D.L.: The osmotic pressure of concentrated protein and lipoprotein solutions and its significance to ultrafiltration. J. Memb. Sci. 20, 63 (1984)

    Article  Google Scholar 

  • Wanner, C., Bahner, U., Mattern, R., et al.: Effect of dialysis flux and membrane material on dyslipidaemia and inflammation in haemodialysis patients. Nephrol. Dial. Transplant. 19(10), 2570–2575 (2004)

    Article  Google Scholar 

  • Ward, R.A.: Protein-leaking membranes for hemodialysis: a new class of membranes in search of an application? J. Am. Soc. Nephrol. 16(8), 2421–2430 (2005)

    Article  Google Scholar 

  • Ward, R.A., Greene, T., Hartmann, B., Samtleben, W.: Resistance to intercompartmental mass transfer limits beta2-microglobulin removal by post-dilution hemodiafiltration. Kidney Int. 69(8), 1431–1437 (2006)

    Google Scholar 

  • Ward, R.A., Schmidt, B., Hullin, J., et al.: A comparison of online hemodiafiltration and high-flux hemodialysis: a prospective clinical study. J. Am. Soc. Nephrol. 11(12), 2344–2350 (2000)

    Google Scholar 

  • Watson, P.E., Watson, I.D., Batt, R.D.: Total body water volumes for adult males and females estimated from simple anthropometric measurements. Am. J. Clin. Nutr. 33(1), 27–39 (1980)

    Google Scholar 

  • Wizemann, V., Kulz, M., Techert, F., Nederlof, B.: Efficacy of haemodiafiltration. Nephrol. Dial. Transplant. 16(suppl. 4), 27–30 (2001)

    Article  Google Scholar 

  • Xu, X.Q., Gruner, N., Al-Bashir, A., et al.: Determination of extra renal clearance and generation rate of beta2-microglobulin in hemodialysis patients using a kinetic model. ASAIO J. 47(6), 623–627 (2001)

    Article  Google Scholar 

  • Zucchelli, P., Santoro, A.: Inorganic phosphate removal during different dialytic procedures. Int. J. Artif. Organs. 10(3), 173–178 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano A. Pedrini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pedrini, L.A. (2013). Techniques and Kinetics of Hemodiafiltration. In: Azar, A. (eds) Modeling and Control of Dialysis Systems. Studies in Computational Intelligence, vol 405. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27558-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27558-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27557-9

  • Online ISBN: 978-3-642-27558-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics