Skip to main content

Understanding and Ameliorating Mixed Pixels and Multipath Interference in AMCW Lidar

  • Chapter
  • First Online:
TOF Range-Imaging Cameras

Abstract

Amplitude modulated continuous wave (AMCW) lidar systems suffer from significant systematic errors due to mixed pixels and multipath interference. Commercial systems can achieve centimetre precision, however accuracy is typically an order of magnitude worse limiting practical use of these devices. In this chapter the authors address AMCW measurement formation and the causes of mixed pixels and multipath interference. A comprehensive review of the literature is given, from the first reports of mixed pixels in point-scanning AMCW systems, through to the gamut of research over the past two decades into mixed pixels and multipath interference. An overview of a variety of detection and mitigation techniques, including deconvolution based intra-camera scattering reduction, modelling of intra-scene scattering, correlation waveform deconvolution techniques/multifrequency sampling and standard removal approaches, all of which can be applied to range-data from standard commercial cameras is presented. The chapter concludes with comments on future work for better detection and correction of systematic errors in full-field AMCW lidar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although primarily intended to mitigate aliasing of correlation waveform harmonics, these linearity calibrations also allow correction for systematic errors due to other effects like crosstalk.

  2. 2.

    In other words, a pulsed system which only returns the range to the closest backscattered return.

  3. 3.

    Strictly, the scattering PSF is complex domain, and the phase of the complex number is a linear function of range. It is important to distinguish the scattering PSF, which is independent of range, from the defocus PSF, which is not.

  4. 4.

    For example, from a Bayesian perspective Tikhonov regularisation corresponds to the assumption of a Gaussian distribution of intensity values.

  5. 5.

    This manifests as aliasing if only a small number of samples are taken of the correlation waveform, hence the importance of harmonic cancellation techniques.

  6. 6.

    For example, if using frequencies of 30 and 20 MHz, the component returns, \(\eta _0\) and \(\eta _1\), would be notated as if captured at a frequency of 10 MHz. This means that there is no cyclic ambiguity, and enables the representation in Eqs. 33 and 34.

References

  1. A.A. Dorrington, M.J. Cree, A.D. Payne, R.M. Conroy, D.A. Carnegie, Meas. Sci. Tech. 18(9), 2809 (2007)

    Article  Google Scholar 

  2. J.P. Godbaz, M.J. Cree, A.A. Dorrington, in ACCV, 2011. Lecture Notes in Computer Science, vol. 6495 (Springer, Berlin, 2011), pp. 397–409

    Google Scholar 

  3. J.P. Godbaz, M.J. Cree, A.A. Dorrington, Remote Sens. 4, 21–42 (2012)

    Google Scholar 

  4. C.I. Chang, X.L. Zhao, M.L.G. Althouse, J.J. Pan, IEEE Trans. Geosci. Remote Sens. 36, 898 (1998). doi:10.1109/36.673681

    Article  Google Scholar 

  5. B.W. Schilling, D.N. Barr, G.C. Templeton, L.J. Mizerka, C.W. Trussell, Appl. Opt. 41, 2791 (2002)

    Article  Google Scholar 

  6. U. Stilla, B. Jutzi, in Topographic Laser Ranging and Scanning. Principles and Processing, ed. by J. Shan, Chap. 7 (CRC Press, Boca Raton, 2009), pp. 215–234

    Google Scholar 

  7. J. Tuley, N. Vandapel, M. Hebert, Analysis and removal of artifacts in 3-d ladar data. Technical report, Carnegie Mellon University Robotics Institute, 2004

    Google Scholar 

  8. J. Tuley, N. Vandapel, M. Hebert, in IEEE International Conference on Robotics and Automation, 2005, pp. 2203–2210

    Google Scholar 

  9. J.P. Godbaz, M.J. Cree, A.A. Dorrington, in Image and Vision Computing New Zealand (IVCNZ’08), 2008, pp. 1–6

    Google Scholar 

  10. I.S. Kweon, R. Hoffman, E. Krotkov, Experimental characterization of the perceptron laser rangefinder. Technical report, Robotics Institute Carnegie Mellon University, 1991

    Google Scholar 

  11. M. Hebert, E. Krotkov, IVC 10, 170 (1992)

    Article  Google Scholar 

  12. M.D. Adams, in Proceedings of IEEE International Conference on Robotics and Automation, vol. 2, 1993, pp. 8–13

    Google Scholar 

  13. S. Oprisescu, D. Falie, M. Ciuc, V. Buzuloiu, in Proceedings of International Symposium on Signals, Circuits and Systems 2007, ISSCS, 2007

    Google Scholar 

  14. S.A. Guomundsson, H. Aanaes, R. Larsen, in Proceedings of International Symposium on Signals, Circuits and Systems 2007, ISSCS, 2007

    Google Scholar 

  15. M. Lindner, I. Schiller, A. Kolb, R. Koch, Comput. Vis. Image Underst. 114, 1318 (2010). doi:10.1016/j.cviu.2009.11.002

  16. M.D. Adams, P.J. Probert, Int. J. Rob. Res. 15(5), 441 (1996)

    Article  Google Scholar 

  17. P. Tang, D. Huber, B. Akinci, A Comparative Analysis of Depth-Discontinuity and Mixed-Pixel Detection Algorithms in Proceedings of the International Conference on 3-D Digital Imaging and Modeling (3DIM) (Los Alamitos, 2007), pp. 29–38

    Google Scholar 

  18. P. Tang, B. Akinci, D. Huber, Quantification of edge loss of laser scanned data at spatial discontinuities. Autom. Constr. 18, 1070–1083 (2009)

    Article  Google Scholar 

  19. M.D. Adams, in Proceedings of 2001 IEEE/RSJ International Conference on Robots and Systems, 2001, pp. 1726–1731

    Google Scholar 

  20. A.D. Sappa, M. Devy, in Proceedings of Third International Conference on 3-D Imaging and Modelling (3DIM ’01), 2001

    Google Scholar 

  21. N. Vandapel, D.F. Huber, A. Kapuria, M. Hebert, in Proceedings of the IEEE International Conference on Robotics and Automation ICRA ’04, vol. 5, 2004, pp. 5117–5122

    Google Scholar 

  22. M. Lindner, A. Kolb, in Proceedings of the SPIE Intelligent Robots and Computer Vision XXV: Algorithms, Techniques, and Active Vision, vol. 6764, 2007. doi:10.1117/12.752808

  23. N. Abdo, A. Borgeat, 3D camera calibration. Technical report, 2010

    Google Scholar 

  24. W. Karel, S. Ghuffar, N. Pfeifer, in International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII, Part 5 Commision V Symposium, 2010

    Google Scholar 

  25. D. Falie, V. Buzuloiu, in Proceedings of 2007 International Symposium on Signals, Circuits and Systems (ISSCS), 2007

    Google Scholar 

  26. S. Jamtsho, D. Lichti, in Proceedings of the ISPRS Commission V Mid-Term Symposium on Close Range Image, Measurement Techniques, 2010

    Google Scholar 

  27. J.P. Godbaz, M.J. Cree, A.A. Dorrington, in Image and Vision Computing New Zealand 2009 (IVCNZ’ 09), 2009, pp. 304–309

    Google Scholar 

  28. D. Falie, V. Buzuloiu, in Proceedings of the IEEE International Workshop on Imaging Systems and Techniques, IST 2008

    Google Scholar 

  29. D. Falie, Improvements of the 3D images captured with Time-Of-Flight cameras. Technical report, Politehnica University of Bucharest, 2009

    Google Scholar 

  30. D. Falie, in 2008 International Conference on Optical Instruments and Technology: Optical Systems and Optoelectronic Instruments. Proceedings of the SPIE, vol. 7156, 2008. doi:10.1117/12.807125

  31. D. Falie, IET Image Process. 5(5), 523 (2011)

    Google Scholar 

  32. T. Kavli, T. Kirkhus, J.T. Thielemann, B. Jagielski, in Two- and Three-Dimensional Methods for Inspection and Metrology VI (SPIE), 2008. doi:10.1117/12.791019

  33. J. Mure-Dubois, H. Hügli, in Two- and Three-Dimensional Methods for Inspection and Metrology V, vol. 6762 (SPIE, Boston, 2007)

    Google Scholar 

  34. J. Mure-Dubois, H. Hügli, in Proceedings of the ICVS Workshop on Camera Calibration Methods for Computer Vision Systems, CCMVS2007, 2007

    Google Scholar 

  35. L. Landweber, Am. J. Math. 73(3), 615 (1951)

    Article  Google Scholar 

  36. L.B. Lucy, Astron. J. 79, 745 (1974)

    Article  Google Scholar 

  37. W.H. Richardson, J. Opt. Soc. Am. (1917–1983) 62, 55 (1972)

    Google Scholar 

  38. S. Fuchs, in Proceedings of the 2010 20th International Conference on Pattern Recognition, (IEEE Computer Society, Washington, DC, 2010), pp. 3583–3586. doi:10.1109/ICPR.2010.874

  39. R.L. Larkins, M.J. Cree, A.A. Dorrington, J.P. Godbaz, in Image and Vision Computing New Zealand 2009 (IVCNZ ’09), 2009, pp. 431–436

    Google Scholar 

  40. N. Otsu, IEEE transactions on systems. Man Cybern. 9(1), 62 (1979). doi:10.1109/TSMC.1979.4310076

    Article  Google Scholar 

  41. M.L. Simpson, M.D. Cheng, T.Q. Dam, K.E. Lenox, J.R. Price, J.M. Storey, E.A. Wachter, W.G. Fisher, Appl. Opt. 44, 7210 (2005)

    Article  Google Scholar 

  42. M.A. Hofton, J.B. Minster, J.B. Blair, IEEE Trans. Geosci. Remote Sens. 38, 1989 (2000). doi:10.1109/36.851780

    Article  Google Scholar 

  43. A. Chauve, C. Mallet, F. Bretar, S. Durrieu, M.P. Deseilligny, W. Puech, in International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2007

    Google Scholar 

  44. J.P. Godbaz, M.J. Cree, A.A. Dorrington, in SPIE 7251—Image Processing: Machine Vision Applications II, vol. 7251 (SPIE, San Jose, 2009), p. 72510T

    Google Scholar 

  45. M. Soumekh, Synthetic Aperture Radar Signal Processing with MATLAB Algorithms (Wiley, New York, 1999)

    Google Scholar 

  46. M. Jankiraman, Design of Multifrequency CW Radars (Scitech, Raleigh, 2007)

    Google Scholar 

  47. S. Levy, P.K. Fullagar, Geophysics 46(9), 1235 (1981)

    Article  Google Scholar 

  48. A.A. Dorrington, J.P. Godbaz, M.J. Cree, A.D. Payne, L.V. Streeter, in SPIE 7864—Three-Dimensional Imaging, Interaction, and Measurement, San Francisco, 2011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Godbaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Godbaz, J.P., Dorrington, A.A., Cree, M.J. (2013). Understanding and Ameliorating Mixed Pixels and Multipath Interference in AMCW Lidar. In: Remondino, F., Stoppa, D. (eds) TOF Range-Imaging Cameras. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27523-4_5

Download citation

Publish with us

Policies and ethics