Skip to main content
  • 1599 Accesses

Abstract

The great majority of research work in CFD, especially those in the first several decades, treats it as numerical solution to nonlinear hyperbolic partial differential equations (PDEs). For a good summary, see Hirsch[1]. Most part of this monograph also treats CFD as numerical solution to nonlinear hyperbolic PDEs. But it is concerned mainly about the role of coordinates in CFD and, in particular, will base all CFD study on the newly discovered unified coordinates. To put it in perspective we shall first give an overview of the major developments of CFD as numerical solution to the initial value problem of nonlinear hyperbolic PDEs as follows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. HIRSCH. Numerical Computation of Internal and External Flows, Vol. II: Computational Methods for Inviscid and Viscous Flows. Wiley, 1990.

    Google Scholar 

  2. G.F.B. RIEMANN. Ueber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite, Abh. König. Gesell. Wiss. Göttingen, 8, 43, 1860.

    Google Scholar 

  3. R. COURANT, K. O. FRIEDRICHS AND H. LEWY. Ãœber die Partiellen differenzengleichugen der mathematischen Physik. Math. Ann., 100, 32, 1928.

    MathSciNet  MATH  Google Scholar 

  4. J. VON NEUMANN AND R.D. RICHTMYER. A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys., 21: 232, 1950.

    Article  MathSciNet  MATH  Google Scholar 

  5. S.K. GODUNOV. A difference scheme for numerical computation of discontinuous solutions of hydrodynamic equations. Math. Sbornik, 47:271, 1959.

    MathSciNet  Google Scholar 

  6. J. GLIMM. Solution in the large for nonlinear hyperbolic systems of equations. Comm. Pure. Appl. Math., 18:697–715, 1965.

    Article  MathSciNet  MATH  Google Scholar 

  7. A.J. CHORIN. Random Choice Solutions of Hyperbolic Systems. J. Comput. Phys., 22:517–533, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  8. G. MORETTI. Thoughts and Afterthoughts About Shock Computations. Polytechnic Institute of Brooklyn PIBAL Report, 72, 1972.

    Google Scholar 

  9. P.D. LAX AND B. WENDROFF. Syetems of conservation laws. Comm. Pure and Applied Mathematics, 13:217–237, 1960.

    Article  MathSciNet  MATH  Google Scholar 

  10. W.H. HUI, P.Y. LI AND Z.W. LI. A unified coordinate system for solving the twodimensional Euler equations. J. Comput. Phys., 153:596–637, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  11. J.P. BORIS AND D.L. BOOK. Flux-corrected transport. I.SHASTA, a fluid transport algorithm that works. J. Comput. Phys., 11:38–69, 1973.

    Article  MATH  Google Scholar 

  12. B. VAN Leer. Towards the ultimate conservative difference scheme IV, a new approach to numerical convection. J. Comput. Phys., 23: 276–299, 1977.

    Article  MATH  Google Scholar 

  13. F.H. HARLOW. LAMS-1956, Los Alamos Scientic Laboratory Report, 1955.

    Google Scholar 

  14. C. W. HIRT, A. A. AMSDEN AND J. L. COOK. An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J. Comput. Phys., 14:227–253, 1974.

    Article  MATH  Google Scholar 

  15. J. U. BRACKBILL AND J. S. SALTZMAN. Adaptive zoning for singular problems in two dimensions. J. Comput. Phys., 46, 342, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  16. W.H. HUI, G.P. ZHAO, J.J. HU AND Y. ZHENG. Flow-generated-grids — gridless computation using the unified coordinates. in Proceedings of the 9th International Conference on Numerical Grid Generation, 111–121, 2005.

    Google Scholar 

  17. D.H. WAGNER. Equivalence of Euler and Lagrangian equations of gas dynamics for weak solutions. J. Differ. Equations, 68:118–136, 1987.

    Article  MATH  Google Scholar 

  18. W.H. HUI AND S. KUDRIAKOV. A unified coordinate system for solving the threedimensional Euler equations. J. Comput. Phys., 172:235–260, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  19. H. LAMB. Hydrodynamics. 6th Ed., New York: Dover publication, 1991.

    Google Scholar 

  20. G. K. BATCHELOR. An Introduction to Fluid Dynamics. Cambridge University Press, 1973.

    Google Scholar 

  21. C.S. YIH. Fluid Mechanics: A Concise Introduction to the Theory. Ann Arbor, Michigan, West River Press, 1988.

    Google Scholar 

  22. L. D. LANDAU AND E.M. LIFSHITZ. Fluid Mechanics. Addison-Wesley Pub. Co., 1959.

    Google Scholar 

  23. M. SHASHKOV. Conservative Finite-difference Methods on General Grids. CRC Press, 1996.

    Google Scholar 

  24. W.H. HUI, Z.N. WU AND B. GAO. Preliminary extension of the unified coordinate approach to computation of viscous flows. J. Sci. Comput., 30:301–344, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  25. W. H. HUI AND C.Y. LOH. A new Lagrangian method for steady supersonic flow computation, Part II: Slipline resolution. J. Comput. Phys., 103:450–464, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  26. W.H. HUI AND C.Y. LOH. A new Lagrangian method for steady supersonic flow computation, Part III: Strong shocks. J. Comput. Phys., 103:465–471, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  27. C.Y. LOH AND W.H. HUI. A new Lagrangian method for steady supersonic flow computation Part I: Godunov scheme. J. Comput. Phys., 89:207–240, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  28. W.H. HUI. The unified coordinate system in computational fluid dynamics. Communications in Computational Physics, 2:577–610, 2007.

    MathSciNet  Google Scholar 

  29. Z. N. WU. A note on the unified coordinate system for computing shock waves. J. Comput. Phys., 180:110–119, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  30. R. M. C. SO, Y. LIU AND Y. G. LAI. Mesh shape preservation for flow-induced vibration problems. Journal of Fluids and Structures, 18:287–304, 2003.

    Article  Google Scholar 

  31. W. H. HUI AND G. P. ZHAO. Capturing contact discontinuities using the unified coordinates, in Proceedings of the 2nd MIT Conference on Computational Fluid and Solid Mechanics (Ed: K J Bathe), Volume 2:2000–2005, 2003.

    Google Scholar 

  32. Y. C. TAI AND C. Y. KUO. A new model of granular flows over general topography with erosion and deposition. Acta Mech., 199:71–96, 2008.

    Article  MATH  Google Scholar 

  33. Y. Y. NIU, Y. H. LIN, W. H. HUI AND C. C. CHANG. Development of a moving artificial compressibility solver on unified coordinates. 65:1029–1052, 2009.

    MathSciNet  Google Scholar 

  34. W.H. HUI AND S. KUDRIAKOV. The role of coordinates in the computation of discontinuities in one-dimensional flow. Computational Fluid Dynamics Journal, 8:495–510, 2000.

    Google Scholar 

  35. W.H. HUI AND S. KUDRIAKOV. On wall overheating and other computational difficulties of shock-capturing methods. Computational Fluid Dynamics J., 10:192–209, 2001.

    Google Scholar 

  36. C.Y. LEPAGE AND W.H. HUI. A shock-adaptive Godunov scheme based on the generalized Lagrangian formulation. J. Comput. Phys., 122:291–299, 1995.

    Article  MATH  Google Scholar 

  37. R.J. LEVEQUE. Nonlinear conservation laws and finite volume methods for astrophysical fluid flow. Computational Methods for Astrophysical Flow, Edited by O. Steiner and A. Gautschy. Springer-Verlag, 1998.

    Google Scholar 

  38. E. GODLEWSKI AND P.A. RAVIART. Numerical Approximation of Hyperbolic Systems of Conservation Laws. New York, Springer-Verlag, 1996.

    MATH  Google Scholar 

  39. E.F. TORO. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Science Press Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hui, WH., Xu, K. (2012). Introduction. In: Computational Fluid Dynamics Based on the Unified Coordinates. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25896-1_1

Download citation

Publish with us

Policies and ethics