Skip to main content

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM,volume 2012))

  • 2268 Accesses

Abstract

Traumatic brain injury (TBI) is the leading cause of death and disability in the world’s population under 45 years of age. About 10% of cases of TBI are severe (Glasgow Coma Scale [GCS] score ≤ 8 points); in this subgroup, the incidence of poor neurological outcome (severe disability, vegetative state or death) still exceeds 55% inmany centers [2]. The endpoints in the early treatment of TBI are adequate and aggressive resuscitation and patient management in the neurointensive care unit is focused on the avoidance and treatment of high intracranial pressure (ICP). To date, no neuroprotective therapy has proven effective in controlled clinical trials involving severe TBI and the International Mission for Prognosis and Analysis of Clinical Trials inTBI (IMPACT) study showed that despite a significant reduction in mortality, neurological sequelae in TBI survivors have not changed significantly in the last 25 years [3].

“The lessons to be learnt, in both science and the law, are to question your assumptions, to be open to new evidence, and not to accept statements from witnesses until their reliability has been verified” (Ekert and Vaux, 2005) [1]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ekert PG, Vaux DL (2005) The mitochondrial death squad: hardened killers or innocent bystanders? Curr Opin Cell Biol 17: 626–630

    Article  PubMed  CAS  Google Scholar 

  2. Gomez PA, Lobato RD, Gonzalez P, et al (1999) Severe head injury. Hospital 12 de Octubre data base. Description of the data and analysis of the final outcome. Neurocirugía 10: 297–308

    Google Scholar 

  3. Marmarou A, Lu J, Butcher I, et al (2007) IMPACT database of traumatic brain injury: design and description. J Neurotrauma 24: 239–250

    Article  PubMed  Google Scholar 

  4. Graham DI, Adams JH, Doyle D (1978) Ischaemic brain damage in fatal non-missile head injuries. J Neurol Sci 39: 213–234

    Article  PubMed  CAS  Google Scholar 

  5. Graham DI, Ford DI, Adams JH, et al (1989) Ischaemic brain damage is still common in fatal non-missile head injury. J Neurol Neurosurg Psychiatry 52: 346–350

    Article  PubMed  CAS  Google Scholar 

  6. Marion DW, Darby J, Yonas H (1991) Acute regional cerebral blood flow changes caused by severe head injuries. J Neurosurg 74: 407–414

    Article  PubMed  CAS  Google Scholar 

  7. Bouma GJ, Muizelaar JP, Stringer WA, et al (1992) Ultra-early evaluation of regional cerebral blood flow in severely head-injured patients using xenon-enhanced computerized tomography. J Neurosurgery 77: 360–368

    Article  CAS  Google Scholar 

  8. Bellander BM, Cantais E, Enblad P, et al (2004) Consensus meeting on microdialysis in neurointensive care. Intensive Care Med 12: 2166–2169

    Article  Google Scholar 

  9. Hillered L, Vespa PM, Hovda DA (2005) Translational neurochemical research in acute human brain injury: the current status and potential future for cerebral microdialysis. J Neurotrauma 22: 3–41

    Article  PubMed  Google Scholar 

  10. Soustiel JF, Larisch S (2010) Mitochondrial damage: a target for new therapeutic horizons. Neurotherapeutics 7: 13–21

    Article  PubMed  CAS  Google Scholar 

  11. Soustiel JF, Sviri GE (2007) Monitoring of cerebral metabolism: non-ischemic impairment of oxidative metabolism following severe traumatic brain injury. Neurol Res 29: 654–660

    Article  PubMed  CAS  Google Scholar 

  12. Vespa P, Bergsneider M, Hattori N, et al (2005) Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab 25: 763–774

    Article  PubMed  CAS  Google Scholar 

  13. Vilalta A, Sahuquillo J, Merino MA, et al (2011) Normobaric hyperoxia in traumatic brain injury. Does brain metabolic state influence the response to hyperoxic challenge? J Neurotrauma 28: 1139–1148

    Article  PubMed  Google Scholar 

  14. Soustiel JF, Vlodavsky E, Milman F, Gavish M, Zaaroor M (2011) Improvement of cerebral metabolism mediated by Ro5-4864 is associated with relief of intracranial pressure and mitochondrial protective effect in experimental brain injury. Pharm Res 28: 2945–2953

    Article  PubMed  CAS  Google Scholar 

  15. Timofeev I, Carpenter KL, Nortje J, et al (2011) Cerebral extracellular chemistry and outcome following traumatic brain injury: a microdialysis study of 223 patients. Brain 134: 484–494

    Article  PubMed  Google Scholar 

  16. Fink M (1997) Cytopathic hypoxia in sepsis. Acta Anesthesiol Scand (Suppl) 110: 87–95

    Article  CAS  Google Scholar 

  17. Siggäard-Andersen O, Ulrich A, Gothgen IH (1995) Classes of tissue hypoxia. Acta Anaesthesiol Scand 39: 137–142

    Article  Google Scholar 

  18. Nelson DW, Thornquist B, Maccallum RM, et al (2011) Analyses of cerebral microdialysis in patients with traumatic brain injury: relations to intracranial pressure, cerebral perfusion pressure and catheter placement. BMC Med 9: 21

    Article  PubMed  Google Scholar 

  19. Connett RJ, Honig CR, Gayeski TE, Brooks GA (1990) Defining hypoxia: a systems view of VO2, glycolysis, energetics, and intracellular PO2. J Appl Physiol 68: 833–842

    PubMed  CAS  Google Scholar 

  20. Siggäard-Andersen O, Fogh-Andersen N, Gothgen IH, Larsen VH (1995) Oxygen status of arterial and mixed venous blood. Crit Care Med 23: 1284–1293

    Article  PubMed  Google Scholar 

  21. Harzing AW (2007) Publish or Perish. Available at http://www.harzing.com/pop.htm. Accessed Nov 2011

    Google Scholar 

  22. Siggäard-Andersen O, Gothgen IH (1995) Oxygen and acid-base parameters of arterial and mixed venous blood, relevant versus redundant. Acta Anaesthesiol Scand 39: 21–27

    Article  Google Scholar 

  23. Siggaard-Andersen M, Siggaard-Andersen O (1995) Oxygen status algorithm, version 3, with some applications. Acta Anaesthesiol Scand 39: 13–20

    Article  Google Scholar 

  24. Sahuquillo J, Poca MA, Amoros S (2001) Current aspects of pathophysiology and cell dysfunction after severe head injury. Curr Pharm Des 7: 1475–503

    Article  PubMed  CAS  Google Scholar 

  25. Marin-Caballos AJ, Murillo-Cabezas F, Dominguez-Roldan JM, et al (2008) [Monitoring of tissue oxygen pressure (PtiO2) in cerebral hypoxia: diagnostic and therapeutic approach.] Med Intensiva 32: 81–90

    Article  PubMed  CAS  Google Scholar 

  26. Poca MA, Sahuquillo J, Mena MP, Vilalta A, Riveiro M (2005) [Recent advances in regional cerebral monitoring in the neurocritical patient: brain tissue oxygen pressure monitoring, cerebral microdialysis and near-infrared spectroscopy.] Neurocirugía (Astur) 16: 385–410

    CAS  Google Scholar 

  27. Gilmer LK, Roberts KN, Joy K, Sullivan PG, Scheff SW (2009) Early mitochondrial dysfunction after cortical contusion injury. J Neurotrauma 26: 1271–1280

    Article  PubMed  Google Scholar 

  28. Clausen TF, Zauner AF, Levasseur Je FAU, Rice Ac FAU, Bullock R (2001) Induced mitochondrial failure in the feline brain: implications for understanding acute post-traumatic metabolic events. Brain Res 908: 35–48

    Article  PubMed  CAS  Google Scholar 

  29. Obrist WD, Langfitt TW, Jaggi JL, Cruz J, Gennarelli TA (1984) Cerebral blood flow and metabolism in comatose patients with acute head injury.Relationship to intracranial hypertension. J Neurosurg 61: 241–253

    Article  PubMed  CAS  Google Scholar 

  30. Burwell LS, Nadtochiy SM, Brookes PS (2009) Cardioprotection by metabolic shut-down and gradual wake-up. J Mol Cell Cardiol 46: 804–810

    Article  PubMed  CAS  Google Scholar 

  31. Vespa PM, McArthur D, O’Phelan K, et al (2003) Persistently low extracellular glucose correlates with poor outcome 6 months after human traumatic brain injury despite a lack of increased lactate: a microdialysis study. J Cereb Blood Flow Metab 23: 865–877

    Article  PubMed  CAS  Google Scholar 

  32. Bullock R, Maxwell WL, Graham DI, Teasdale GM, Adams JH (1991) Glial swelling following human cerebral contusion: an ultrastructural study. J Neurol Neurosurg Psychiatry 54: 427–434

    Article  PubMed  CAS  Google Scholar 

  33. Verweij BH, Muizelaar JP, Vinas FC, et al (1997) Mitochondrial dysfunction after experimental and human brain injury and its possible reversal with a selective N-type calcium channel antagonist (SNX-111). Neurol Res 19: 334–339

    PubMed  CAS  Google Scholar 

  34. Xiong Y, Peterson PL, Verweij BH, et al (1998) Mitochondrial dysfunction after experimental traumatic brain injury: combined efficacy of SNX-111 and U-101033E. J Neurotrauma 15: 531–544

    Article  PubMed  CAS  Google Scholar 

  35. Geller RJ, Barthold C, Saiers JA, Hall AH (2006) Pediatric cyanide poisoning: causes, manifestations, management, and unmet needs. Pediatrics 118: 2146–2158

    Article  PubMed  Google Scholar 

  36. Fink MP (2002) Bench-to-bedside review: Cytopathic hypoxia. Crit Care 6: 491–499

    Article  PubMed  Google Scholar 

  37. Zhang J, Dawson VL, Dawson TM, Snyder SH (1994) Nitric oxide activation of poly(ADPribose) synthetase in neurotoxicity. Science 263: 687–689

    Article  PubMed  CAS  Google Scholar 

  38. Szabó C, Zingarelli B, O’Connor M, Salzman AL (1996) DNA strand breakage, activation of poly (ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite. Proc Natl Acad Sci USA 93: 1753–1758

    Article  PubMed  Google Scholar 

  39. Baines CP (2009) The molecular composition of the mitochondrial permeability transition pore. J Mol Cell Cardiol 46: 850–857

    Article  PubMed  CAS  Google Scholar 

  40. Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6: 513–519

    Article  PubMed  CAS  Google Scholar 

  41. Halestrap AP (2009) What is the mitochondrial permeability transition pore? J Mol Cell Cardiology 46: 821–831

    Article  CAS  Google Scholar 

  42. Magnoni S, Ghisoni L, Locatelli M, et al (2003) Lack of improvement in cerebral metabolism after hyperoxia in severe head injury: a microdialysis study. J Neurosurgery 98: 952–958

    Article  Google Scholar 

  43. Menzel M, Doppenberg EM, Zauner A, et al (1999) Increased inspired oxygen concentration as a factor in improved brain tissue oxygenation and tissue lactate levels after severe human head injury. J Neurosurgery 91: 1–10

    Article  CAS  Google Scholar 

  44. Manabe H, Okonkwo DO, Gainer JL, Clarke RH, Lee KS (2010) Protection against focal ischemic injury to the brain by trans-sodium crocetinate. Laboratory investigation. J Neurosurg 113: 802–809

    Article  PubMed  CAS  Google Scholar 

  45. Stennett AK, Dempsey GL, Gainer JL (2006) Trans-Sodium crocetinate and diffusion enhancement. J Phys Chem B 110: 18078–18080

    Article  PubMed  CAS  Google Scholar 

  46. Lo EH, Dalkara T, Moskowitz MA (2003) Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 4: 399–415

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sahuquillo, J., Merino, MA., Airado, C. (2012). Mitochondrial Dysfunction after Traumatic Brain Injury. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2012. Annual Update in Intensive Care and Emergency Medicine, vol 2012. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25716-2_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25716-2_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25715-5

  • Online ISBN: 978-3-642-25716-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics