Skip to main content

Achieving the Ground State and Enhancing Optomechanical Entanglement

  • Chapter
  • First Online:
Exploring Macroscopic Quantum Mechanics in Optomechanical Devices

Part of the book series: Springer Theses ((Springer Theses))

  • 906 Accesses

Abstract

In the previous chapter, we have seen that in order to achieve the quantum ground state of a mechanical oscillator, with three-mode or even general optomechanical devices, the cavity bandwidth needs to be smaller than the mechanical frequency. This is the so-called resolved-sideband or good-cavity limit. In this chapter, we provide a new but physically equivalent insight into the origin of such a limit: that is information loss due to a finite cavity bandwidth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There is a factor of two difference in defining the cavity bandwidth here compared with the one defined in Ref. [33].

  2. 2.

    For simplicity, we use the same \(\hat o\) to denote its perturbed part.

References

  1. G. Adesso, F. Illuminati, Entanglement in continuous-variable systems: recent advances and current perspectives. J. Phys. A: Math. Theor. 40(28), 7821 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71–74 (2006)

    Article  ADS  Google Scholar 

  3. D.G. Blair, E.N. Ivanov, M.E. Tobar, P.J. Turner, van F. Kann, I.S. Heng, High sensitivity gravitational wave antenna with parametric transducer readout. Phys. Rev. Lett. 74, 1908 (1995)

    Article  ADS  Google Scholar 

  4. D. Bouwmeester, A. Ekert, A. Zeilinger, The Physics of Quantum Information (Springer, Berlin, 2002)

    Google Scholar 

  5. V.B. Braginsky, F.Y. Khalili, Quantum Measurement (Cambridge University Press, Cambridge, 1992)

    Book  MATH  Google Scholar 

  6. A. Buonanno, Y. Chen, Scaling law in signal recycled laserinterferometer gravitational-wave detectors. Phys. Rev. D 67, 062002 (2003)

    Article  ADS  Google Scholar 

  7. P.F. Cohadon, A. Heidmann, M. Pinard, Cooling of a mirror by radiation pressure. Phys. Rev. Lett. 83, 3174 (1999)

    Article  ADS  Google Scholar 

  8. LIGO Scientific Collaboration, Observation of a kilogram-scale oscillator near its quantum ground state. New J. Phys. 11(7), 073032 (2009)

    Google Scholar 

  9. T. Corbitt, Y. Chen, E. Innerhofer, H. Mueller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, N. Mavalvala, An all-optical trap for a gram-scale mirror. Phys. Rev. Lett. 98, 150802–4 (2007)

    Google Scholar 

  10. T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith, S. Whitcomb, N. Mavalvala, Optical dilution and feedback cooling of a gram-scale oscillator to 69 mK. Phys. Rev. Lett. 99, 160801–1608014 (2007)

    Article  ADS  Google Scholar 

  11. S. Danilishin, H. Mueller-Ebhardt, H. Rehbein, K. Somiya, R. Schnabel, K. Danzmann, T. Corbitt, C. Wipf, N. Mavalvala, Y. Chen, Creation of a quantum scillator by classical control. arXiv:0809.2024 (2008)

    Google Scholar 

  12. L. Diosi, A universal master equation for the gravitational violation of quantum mechanics. Phys. Lett. A 120, 377–381 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  13. L. Diosi, Models for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A 40, 1165 (1989)

    Article  ADS  Google Scholar 

  14. L. Diosi, Laser linewidth hazard in optomechanical cooling. Phys. Rev. A 78, 021801 (2008)

    Article  ADS  Google Scholar 

  15. A.C. Doherty, K. Jacobs, Feedback control of quantum systems using continuous state estimation. Phys. Rev. A 60, 2700 (1999)

    Article  ADS  Google Scholar 

  16. A.C. Doherty, S.M. Tan, A.S. Parkins, D.F. Walls, State determination in continuous measurement. Phys. Rev. A 60, 2380 (1999)

    Article  ADS  Google Scholar 

  17. F. Elste, S.M. Girvin, A.A. Clerk, Quantum noise interference and backaction cooling in cavity nanomechanics. Phys. Rev. Lett. 102, 207209 (2009)

    Article  ADS  Google Scholar 

  18. I. Favero, C. Metzger, S. Camerer, D. Konig, H. Lorenz, J.P. Kotthaus, K. Karrai, Optical cooling of a micromirror of wavelength size. Appl. Phys. Lett. 90, 104101–3 (2007)

    Article  ADS  Google Scholar 

  19. C. Gardiner, P. Zoller, Quantum Noise (Springer, Berlin, 2004)

    MATH  Google Scholar 

  20. C. Genes, D. Vitali, P. Tombesi, Simultaneous cooling and entanglement of mechanical modes of a micromirror in an optical cavity. New J. Phys. 10(9), 095009 (2008)

    Article  ADS  Google Scholar 

  21. S. Gigan, H.R. Böhm, M. Paternostro, F. Blaser, G. Langer, J.B. Hertzberg, K.C. Schwab, D. Bäuerle, M. Aspelmeyer, A. Zeilinger, Self-cooling of a micromirror by radiation pressure. Nature 444, 67–70 (2006)

    Google Scholar 

  22. S. Gröblacher, S. Gigan, H.R. Böhm, A. Zeilinger, M. Aspelmeyer, Radiation-pressure self-cooling of a micromirror in a cryogenic environment. EPL Europhys. Lett. 81(5), 54003 (2008)

    Google Scholar 

  23. S. Gröblacher, J.B. Hertzberg, M.R. Vanner, G.D. Cole, S. Gigan, K.C. Schwab, M. Aspelmeyer, Demonstration of an ultracold microoptomechanical oscillator in a cryogenic cavity. Nat. Phys. 5, 485–488 (2009)

    Google Scholar 

  24. M.J. Hartmann, M.B. Plenio, Steady state entanglement in the mechanical vibrations of two dielectric membranes. Phys. Rev. Lett. 101, 200503 (2008)

    Article  ADS  Google Scholar 

  25. A. Hopkins, K. Jacobs, S. Habib, K. Schwab, Feedback cooling of a nanomechanical resonator. Phys. Rev. B 68, 235328 (2003)

    Article  ADS  Google Scholar 

  26. M. Horodecki, P. Horodecki, R. Horodecki, Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1–8 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. G. Jourdan, F. Comin, J. Chevrier, Mechanical mode dependence of bolometric backaction in an atomic force microscopy microlever. Phys. Rev. Lett. 101, 133904–4 (2008)

    Article  ADS  Google Scholar 

  28. Y.-H. Kim, R. Yu, S.P. Kulik, Y. Shih, M.O. Scully, Delayed choice quantum eraser. Phys. Rev. Lett. 84, 1 (2000)

    Article  ADS  Google Scholar 

  29. H.J. Kimble, Y. Levin, A.B. Matsko, K.S. Thorne, S.P. Vyatchanin , Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics. Phys. Rev. D 65, 022002 (2001)

    Article  ADS  Google Scholar 

  30. D. Kleckner, D. Bouwmeester, Sub-kelvin optical cooling of a micromechanical resonator. Nature 444, 75–78 (2006)

    Article  ADS  Google Scholar 

  31. S. Mancini, D. Vitali, P. Tombesi, Optomechanical cooling of a macroscopic oscillator by homodyne feedback. Phys. Rev. Lett. 80, 688 (1998)

    Article  ADS  Google Scholar 

  32. S. Mancini, V. Giovannetti, D. Vitali, P. Tombesi, Entangling macroscopic oscillators exploiting radiation pressure. Phys. Rev. Lett. 88, 120401 (2002)

    Article  ADS  Google Scholar 

  33. F. Marquardt, J.P. Chen, A.A. Clerk, S.M. Girvin, Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007)

    Article  ADS  Google Scholar 

  34. W. Marshall, C. Simon, R. Penrose, D. Bouwmeester, Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  35. C.H. Metzger, K. Karrai, Cavity cooling of a microlever. Nature 432, 1002–1005 (2004)

    Article  ADS  Google Scholar 

  36. H. Miao, S. Danilishin, Y. Chen, Universal quantum entanglement between an oscillator and continuous fields. arXiv:0908.1053 (2009)

    Google Scholar 

  37. H. Miao, S. Danilishin, H. Mller-Ebhardt, Y. Chen, Achieving ground state and enhancing optomechanical entanglement by recovering information. New J. Phys. 12, 083032 (2010)

    Article  ADS  Google Scholar 

  38. G.J. Milburn, Classical and quantum conditional statistical dynamics. Quantum Semiclassical Opt.: J. Eur. Opt. Soc. Part B 8(1), 269 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  39. C.M. Mow-Lowry, A.J. Mullavey, S. Gossler, M.B. Gray, D.E. Mc-Clelland, Cooling of a gram-scale cantilever flexure to 70 mK with a servo-modified optical spring. Phys. Rev. Lett. 100, 010801–4 (2008)

    Article  ADS  Google Scholar 

  40. H. Mueller-Ebhardt, H. Rehbein, R. Schnabel, K. Danzmann, Y. Chen, Entanglement of macroscopic test masses and the standard quantum limit in laser interferometry. Phys. Rev. Lett. 100, 013601 (2008)

    Article  ADS  Google Scholar 

  41. H. Mueller-Ebhardt, H. Rehbein, C. Li, Y. Mino, K. Somiya, R. Schnabel, K. Danzmann, Y. Chen, Quantum-state preparation and macroscopic entanglement in gravitational-wave detectors. Phys. Rev. A 80, 043802 (2009)

    Article  ADS  Google Scholar 

  42. A. Naik, O. Buu, M.D. LaHaye, A.D. Armour, A.A. Clerk, M.P. Blencowe, K.C. Schwab, Cooling a nanomechanical resonator with quantum back-action. Nature 443, 193–196 (2006)

    Article  ADS  Google Scholar 

  43. A.D. O’Connell, M. Hofheinz, M. Ansmann, R.C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J.M. Martinis, A.N. Cleland, Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010)

    Article  ADS  Google Scholar 

  44. M. Paternostro, D. Vitali, S. Gigan, M.S. Kim, C. Brukner, J. Eisert, M. Aspelmeyer, Creating and probing multipartite macroscopic entanglement with light. Phys. Rev. Lett. 99, 250401 (2007)

    Article  ADS  Google Scholar 

  45. R. Penrose, On gravity’s role in quantum state reduction. Gen. Relativ. Gravitation 28, 581–600 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  46. A. Peres, Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  47. M. Poggio, C.L. Degen, H.J. Mamin, D. Rugar, Feedback cooling of a cantilever’s fundamental mode below 5 mK. Phys. Rev. Lett. 99, 017201–4 (2007)

    Article  ADS  Google Scholar 

  48. P. Rabl, C. Genes, K. Hammerer, M. Aspelmeyer, Phase-noise induced limitations on cooling and coherent evolution in optomechanical systems. Phys. Rev. A 80, 063819 (2009)

    Article  ADS  Google Scholar 

  49. S.W. Schediwy, C. Zhao, L. Ju, D.G. Blair, P. Willems, Observation of enhanced optical spring damping in a macroscopic mechanical resonator and application for parametric instability control in advanced gravitationalwave detectors. Phys. Rev. A 77, 013813–5 (2008)

    Article  ADS  Google Scholar 

  50. A. Schliesser, P. Del’Haye, N. Nooshi, K.J. Vahala, T.J. Kippenberg, Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Phys. Rev. Lett. 97, 243905–4 (2006)

    Article  ADS  Google Scholar 

  51. A. Schliesser, R. Riviere, G. Anetsberger, O. Arcizet, T.J. Kippenberg, Resolved-sideband cooling of a micromechanical oscillator. Nat. Phys. 4, 415–419 (2008)

    Article  Google Scholar 

  52. M.O. Scully, K. Druhl, Quantum eraser: a proposed photon correlation experiment concerning observation and delayed choice in quantum mechanics. Phys. Rev. A 25, 2208 (1982)

    Article  ADS  Google Scholar 

  53. R. Simon, Peres-horodecki separability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2726 (2000)

    Article  ADS  Google Scholar 

  54. J.D. Teufel, J.W. Harlow, C.A. Regal, K.W. Lehnert, Dynamical backaction of microwave fields on a nanomechanical oscillator. Phys. Rev. Lett. 101, 197203–4 (2008)

    Article  ADS  Google Scholar 

  55. J.D. Thompson, B.M. Zwickl, A.M. Jayich, F. Marquardt, S.M. Girvin, J.G.E. Harris, Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72–75 (2008)

    Article  ADS  Google Scholar 

  56. G. Vidal, R.F. Werner, Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Google Scholar 

  57. D. Vitali, S. Gigan, A. Ferreira, H.R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, M. Aspelmeyer, Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007)

    Google Scholar 

  58. S. Vyatchanin, Effective cooling of quantum system. Dokl. Akad. Nauk SSSR 234, 688 (1977)

    Google Scholar 

  59. I. Wilson-Rae, N. Nooshi, W. Zwerger, T.J. Kippenberg, Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. 99, 093901 (2007)

    Article  ADS  Google Scholar 

  60. C. Zhao, L. Ju, H. Miao, S. Gras, Y. Fan, D.G. Blair, Three-mode optoacoustic parametric amplifier: a tool for macroscopic quantum experiments. Phys. Rev. Lett. 102, 243902 (2009)

    Article  ADS  Google Scholar 

  61. W.H. Zurek, Decoherence and the transition from quantum to classical. Phys. Today 44, 36–44 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haixing Miao .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miao, H. (2012). Achieving the Ground State and Enhancing Optomechanical Entanglement. In: Exploring Macroscopic Quantum Mechanics in Optomechanical Devices. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25640-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25640-0_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25639-4

  • Online ISBN: 978-3-642-25640-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics