Skip to main content

Fully Generalized Graph Cores

  • Conference paper
Complex Networks

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 116))

Abstract

A core in a graph is usually taken as a set of highly connected vertices. Although general, this definition is intuitive and useful for studying the structure of many real networks. Nevertheless, depending on the problem, different formulations of graph core may be required, leading us to the known concept of generalized core. In this paper we study and further extend the notion of generalized core. Given a graph, we propose a definition of graph core based on a subset of its subgraphs and on a subgraph property function. Our approach generalizes several notions of graph core proposed independently in the literature, introducing a general and theoretical sound framework for the study of fully generalized graph cores. Moreover, we discuss emerging applications of graph cores, such as improved graph clustering methods and complex network motif detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Seidman, S.B.: Network structure and minimum degree. Social Networks 5(3), 269–287 (1983)

    Article  MathSciNet  Google Scholar 

  2. Wasserman, S., Faust, K.: Social network analysis: Methods and applications. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  3. Batagelj, V., Zaveršnik, M.: Generalized cores. arXiv:cs/0202039 (2002)

    Google Scholar 

  4. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large networks: Natural cluster sizes and the absence of large well-define clusters. arXiv:0810.1355 (2008)

    Google Scholar 

  5. Wei, F., Qian, W., Wang, C., Zhou, A.: Detecting Overlapping Community Structures in Networks. World Wide Web 12(2), 235–261 (2009)

    Article  Google Scholar 

  6. Schloegel, K., Karypis, G., Kumar, V.: Graph partitioning for high-performance scientific simulations. Morgan Kaufmann Publishers, Inc., San Francisco (2003)

    MATH  Google Scholar 

  7. Abou-Rjeili, A., Karypis, G.: Multilevel algorithms for partitioning power-law graphs. In: IEEE International Parallel & Distributed Processing Symposium, p. 10. IEEE, Los Alamitos (2006)

    Google Scholar 

  8. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005)

    Article  Google Scholar 

  9. Farkas, I., Ábel, D., Palla, G., Vicsek, T.: Weighted network modules. New J. Physics 9(6), 180 (2007)

    Article  Google Scholar 

  10. Shen, H., Cheng, X., Cai, K., Hu, M.B.: Detect overlapping and hierarchical community structure in networks. Physica A: Statistical Mechanics and its Applications 388(8), 1706–1712 (2009)

    Article  Google Scholar 

  11. Saito, K., Yamada, T., Kazama, K.: Extracting Communities from Complex Networks by the k-dense Method. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 91, 3304–3311 (2008)

    Article  Google Scholar 

  12. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network Motifs: Simple Building Blocks of Ccomplex Networks. Science 298, 824–827 (2002)

    Article  Google Scholar 

  13. Saito, R., Suzuki, H., Hayashizaki, Y.: Construction of reliable protein-protein interaction networks with a new interaction generality measure. Bioinformatics 19(6), 756–763 (2002)

    Article  Google Scholar 

  14. Albert, I., Albert, R.: Conserved network motifs allow protein-protein interaction prediction. Bioinformatics 20(18), 3346–3352 (2004)

    Article  Google Scholar 

  15. Kashtan, N., Itzkovitz, S., Milo, R., Alon, U.: Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics 20(11), 1746–1758 (2004)

    Article  Google Scholar 

  16. Kuramochi, M., Karypis, G.: An efficient algorithm for discovering frequent subgraphs. IEEE Transactions on Knowledge and Data Engineering 16(9), 1038–1051 (2004)

    Article  Google Scholar 

  17. Milenković, T., Lai, J., Pržulj, N.: Graphcrunch: a tool for large network analyses. BMC Bioinformatics 9(1), 70 (2008)

    Article  Google Scholar 

  18. Jaccard, P.: Distribution de la flore alpine dans le Bassin des Dranses et dans quelques regions voisines. Bull. Soc. Vaud. Sci. Nat. 37, 241–272 (1901)

    Google Scholar 

  19. Tanimoto, T.T.: IBM Internal Report November 17th. Technical report, IBM (1957)

    Google Scholar 

  20. Xu, X., Yuruk, N., Feng, Z., Schweiger, T.A.J.: Scan: a structural clustering algorithm for networks. In: SIGKDD, pp. 824–833. ACM, New York (2007)

    Google Scholar 

  21. Whitney, H.: On the abstract properties of linear dependence. American Journal of Mathematics 57(3), 509–533 (1935)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tutte, W.T.: Lectures on matroids. J. Res. Nat. Bur. Stand. B 69, 1–47 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the AMS 7(1), 48–50 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  24. Borůvka, O.: On a minimal problem. Prace Moraské Pridovedecké Spolecnosti 3 (1926)

    Google Scholar 

  25. Spielman, D.A., Teng, S.H.: A local clustering algorithm for massive graphs and its application to nearly-linear time graph partitioning. arXiv.org:0809.3232 (2008)

    Google Scholar 

  26. Andersen, R., Lang, K.J.: Communities from seed sets. In: WWW, pp. 223–232. ACM, New York (2006)

    Google Scholar 

  27. Chung, F.: The heat kernel as the pagerank of a graph. PNAS 104(50), 19735–19740 (2007)

    Article  Google Scholar 

  28. Lancichinetti, A., Fortunato, S., Kertész, J.: Detecting the overlapping and hierarchical community structure in complex networks. New J. Physics 11, 33015 (2009)

    Article  Google Scholar 

  29. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 10008 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Francisco, A.P., Oliveira, A.L. (2011). Fully Generalized Graph Cores. In: da F. Costa, L., Evsukoff, A., Mangioni, G., Menezes, R. (eds) Complex Networks. Communications in Computer and Information Science, vol 116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25501-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25501-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25500-7

  • Online ISBN: 978-3-642-25501-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics