Skip to main content

General Basics

  • Chapter
  • First Online:
Micrometeorology
  • 2366 Accesses

Abstract

This introductory chapter provides the basics for this book, and terms such as micrometeorology, atmospheric boundary layer, and meteorological scales are defined and presented in relation to the subject matter of this book. Besides an historical outline, the energy and water balance equations at the Earth’s surface and the transport processes are discussed. The first chapter of the book focus on the micrometeorological basics, which are then expanded in the following theoretical and experimental chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Supplements are short summaries from textbooks in meteorology and other sciences. These are included for an enhanced understanding of this book or for comparisons. For details, see the relevant textbooks.

References

  • Albrecht F (1940) Untersuchungen über den Wärmehaushalt der Erdoberfläche in verschiedenen Klimagebieten. Reichsamt Wetterdienst, Wiss Abh. Bd. VIII, Nr. 2:1–82.

    Google Scholar 

  • André J-C, Bougeault P and Goutorbe J-P (1990) Regional estimates of heat and evaporation fluxes over non-homogeneous terrain, Examples from the HAPEX-MOBILHY programme. Boundary-Layer Meteorol. 50:77–108.

    Google Scholar 

  • Arya SP (2001) Introduction to Micrometeorology. Academic Press, San Diego, 415 pp.

    Google Scholar 

  • Barkov E (1914) Vorläufiger Bericht über die meteorologischen Beobachtungen der Deutschen Antarktisexpedition 1911–1912. Meteorol Z. 49:120–126.

    Google Scholar 

  • Barrett EW and Suomi VE (1949) Preliminary report on temperature measurement by sonic means. J Meteorol. 6:273–276.

    Google Scholar 

  • Baumgartner A and Reichel E (1975) The World Water Balance. Elsevier, Amsterdam, New York, 179 pp.

    Google Scholar 

  • Beniston M (1998) From Turbulence to Climate. Springer, Berlin, Heidelberg, 328 pp.

    Google Scholar 

  • Beyrich F and Mengelkamp H-T (2006) Evaporation over a heterogeneous land surface: EVA_GRIPS and the LITFASS-2003 experiment - an overview. Boundary-Layer Meteorol. 121:5–32.

    Google Scholar 

  • Bird RB, Stewart WE and Lightfoot EN (2007) Transport Phenomena. John Wiley & Sons, Inc., New York, 905 pp.

    Google Scholar 

  • Blackadar AK (1976) Modeling the nocturnal boundary layer. 4th Symposium on Atmospheric Turbulence, Diffusion and Air Pollution, Raylaigh, NC, Oct. 19–22, 1976. Am. Meteorol. Soc., pp. 46-49.

    Google Scholar 

  • Blöschl G and Sivapalan M (1995) Scale issues in hydrological modelling - a review. Hydrol Processes. 9:251–290.

    Google Scholar 

  • Bovscheverov VM and Voronov VP (1960) Akustitscheskii fljuger (Acoustic rotor). Izv AN SSSR, ser Geofiz. 6:882–885.

    Google Scholar 

  • Bradley EF (1968) A shearing stress meter for micrometeorological studies. Quart J Roy Meteorol Soc. 94:380–387.

    Google Scholar 

  • Brutsaert W (2005) Hydrology. Cambridge University Press, Cambridge, XII, 605 pp.

    Google Scholar 

  • Budyko MI (1974) Climate and Life. Academic Press, New York, 508 pp.

    Google Scholar 

  • Burridge DM and Gadd AJ (1977) The Meteorological Office operational 10-level numerical weather prediction model (December 1975). Meteorological Office Technical Notes. 34:39 pp.

    Google Scholar 

  • Businger JA and Yaglom AM (1971) Introduction to Obukhov’s paper “Turbulence in an atmosphere with a non-uniform temperature”. Boundary-Layer Meteorol. 2:3–6.

    Google Scholar 

  • Businger JA, Wyngaard JC, Izumi Y and Bradley EF (1971) Flux-profile relationships in the atmospheric surface layer. J Atmos Sci. 28:181–189.

    Google Scholar 

  • Davidson PA, Kaneda Y, Moffatt K and Sreenivasan KR (eds) (2011) A Voyage through Turbulence. Cambridge University Press, Cambridge, 434 pp.

    Google Scholar 

  • Dutton JA (2002) The Ceaseless Wind: An Introduction to the Theory of Atmospheric Motion. Dover Publications, Mineola, NY, 640 pp.

    Google Scholar 

  • Dyer AJ, Hicks BB and King KM (1967) The Fluxatron - A revised approach to the measurement of eddy fluxes in the lower atmosphere. Journal Applied Meteorology. 6:408–413.

    Google Scholar 

  • Dyer AJ, Garratt JR, Francey RJ, McIlroy IC, Bacon NE, Hyson P, Bradley EF, Denmead DT, Tsvang LR, Volkov JA, Kaprov BM, Elagina LG, Sahashi K, Monji N, Hanafusa T, Tsukamoto O, Frenzen P, Hicks BB, Wesely M, Miyake M and Shaw WJ (1982) An international turbulence comparison experiment (ITCE 1976). Boundary-Layer Meteorol. 24:181–209.

    Google Scholar 

  • Etling D (2008) Theoretische Meteorologie. Springer, Berlin, Heidelberg, 376 pp.

    Google Scholar 

  • Foken T, Kitajgorodskij SA and Kuznecov OA (1978) On the dynamics of the molecular temperature boundary layer above the sea. Boundary-Layer Meteorol. 15:289–300.

    Google Scholar 

  • Foken T, Wichura B, Klemm O, Gerchau J, Winterhalter M and Weidinger T (2001) Micrometeorological conditions during the total solar eclipse of August 11,1999. Meteorol Z. 10:171–178.

    Google Scholar 

  • Foken T (2006) 50 years of the Monin-Obukhov similarity theory. Boundary-Layer Meteorol. 119:431–447.

    Google Scholar 

  • Foken T, Meixner FX, Falge E, Zetzsch C, Serafimovich A, Bargsten A, Behrendt T, Biermann T, Breuninger C, Dix S, Gerken T, Hunner M, Lehmann-Pape L, Hens K, Jocher G, Kesselmeier J, Lüers J, Mayer JC, Moravek A, Plake D, Riederer M, Rütz F, Scheibe M, Siebicke L, Sörgel M, Staudt K, Trebs I, Tsokankunku A, Welling M, Wolff V and Zhu Z (2012) Coupling processes and exchange of energy and reactive and non-reactive trace gases at a forest site – results of the EGER experiment. Atmos Chem Phys. 12:1923–1950.

    Google Scholar 

  • Foken T (2013) Energieaustausch an der Erdoberfläche. Edition am Gutenbergplatz, Leipzig, 99 pp.

    Google Scholar 

  • Frisch U (1995) Turbulence. Cambridge Univ. Press, Cambridge, 296 pp.

    Google Scholar 

  • Garratt JR (1978) Flux profile relations above tall vegetation. Quart J Roy Meteorol Soc. 104:199–211.

    Google Scholar 

  • Garratt JR and Hicks BB (1990) Micrometeorological and PBL experiments in Australia. Boundary-Layer Meteorol. 50:11–32.

    Google Scholar 

  • Garratt JR (1992) The Atmospheric Boundary Layer. Cambridge University Press, Cambridge, 316 pp.

    Google Scholar 

  • Geiger R (1927) Das Klima der bodennahen Luftschicht. Friedr. Vieweg & Sohn, Braunschweig, 246 pp.

    Google Scholar 

  • Geiger R, Aron RH and Todhunter P (2009) The Climate near the Ground. Rowman & Littlefield, Lanham, XVIII, 623 pp.

    Google Scholar 

  • Geiger R (2013) Das Klima der bodennahen Luftschicht. Springer Vieweg, Wiesbaden, 646 pp.

    Google Scholar 

  • Glickman TS (ed) (2000) Glossary of Meteorology. Am. Meteorol. Soc., Boston, MA, 855 pp.

    Google Scholar 

  • Hanafusa T, Fujitana T, Kobori Y and Mitsuta Y (1982) A new type sonic anemometer-thermometer for field operation. Papers Meteorol Geophys. 33:1–19.

    Google Scholar 

  • Hann JF and Süring R (1939) Lehrbuch der Meteorologie. Verlag von Willibald Keller, Leipzig, 480 pp.

    Google Scholar 

  • Hartmann DL (1994) Global Physical Climatology. Academic Press, San Diego, New York, 408 pp.

    Google Scholar 

  • Haugen DA (ed) (1973) Workshop on Micrometeorology. Am. Meteorol. Soc., Boston, 392 pp.

    Google Scholar 

  • Henderson-Sellers A and Robinson PJ (1986) Contemporary Climatology. John Wiley & Sons, Inc., New York, 439 pp.

    Google Scholar 

  • Högström U (1988) Non-dimensional wind and temperature profiles in the atmospheric surface layer: A re-evaluation. Boundary-Layer Meteorol. 42:55–78.

    Google Scholar 

  • Högström U (1990) Analysis of turbulence structure in the surface layer with a modified similarity formulation for near neutral conditions. J Atmos Sci. 47:1949–1972.

    Google Scholar 

  • Houghton DD (1985) Handbook of applied meteorology. Wiley, New York, XV, 1461 pp.

    Google Scholar 

  • Houghton JT (2015) Global Warming, The complete Briefing. Cambridge University Press, Cambridge, 396 pp.

    Google Scholar 

  • Hupfer P and Kuttler W (eds) (2005) Witterung und Klima, begründet von Ernst Heyer. B.G. Teubner, Stuttgart, Leipzig, 554 pp.

    Google Scholar 

  • Izumi Y (1971) Kansas 1968 field program data report. Air Force Cambridge Research Laboratory, Bedford, MA, 79 pp.

    Google Scholar 

  • Jiang B, Zhang Y, Liang S, Wohlfahrt G, Arain A, Cescatti A, Georgiadis T, Jia K, Kiely G, Lund M, Montagnani L, Magliulo V, Ortiz PS, Oechel W, Vaccari FP, Yao Y and Zhang X (2015) Empirical estimation of daytime net radiation from shortwave radiation and ancillary information. Agrical Forest Meteorol. 211–212:23–36.

    Google Scholar 

  • Kaimal JC and Businger JA (1963) A continuous wave sonic anemometer-thermometer. J Climate Appl Meteorol 2:156–164.

    Google Scholar 

  • Kaimal JC and Wyngaard JC (1990) The Kansas and Minnesota experiments. Boundary-Layer Meteorol. 50:31–47.

    Google Scholar 

  • Kiehl J and Trenberth KE (1997) Earth annual global mean energy budget. Bull Amer Meteorol Soc. 78:197–208.

    Google Scholar 

  • Kleinschmidt E (ed) (1935) Handbuch der meteorologischen Instrumente und ihrer Auswertung. Springer, Berlin, 733 pp.

    Google Scholar 

  • Kolmogorov AN (1941a) Lokalnaja struktura turbulentnosti v neschtschimaemoi schidkosti pri otschen bolschich tschislach Reynoldsa (The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers). Dokl AN SSSR. 30:299–303.

    Google Scholar 

  • Kolmogorov AN (1941b) Rassejanie energii pri lokolno-isotropoi turbulentnosti (Dissipation of energy in locally isotropic turbulence). Dokl AN SSSR. 32:22–24.

    Google Scholar 

  • Kopp G and Lean JL (2011) A new, lower value of total solar irradiance: Evidence and climate significance. Geophys Res Letters. 38:L01706.

    Google Scholar 

  • Korzun VI (ed) (1978) World Water Balance and Water Resources of the Earth. UNESCO, Paris, 663 pp.

    Google Scholar 

  • Kraus H (2004) Die Atmosphäre der Erde. Springer, Berlin, Heidelberg, 422 pp.

    Google Scholar 

  • Kraus H (2008) Grundlagen der Grenzschichtmeteorologie. Springer, Berlin, Heidelberg, 211 pp.

    Google Scholar 

  • Lehmann A and Kalb M (1993) 100 Jahre meteorologische Beobachtungen an der Säkularstation Potsdam 1893–1992. Deutscher Wetterdienst, Offenbach, 32 pp.

    Google Scholar 

  • Lettau H (1939) Atmosphärische Turbulenz. Akad. Verlagsges., Leipzig, 283 pp.

    Google Scholar 

  • Lettau H (1949) Isotropic and non-isitropic turbulence in the atmospheric surface layer. Geophys Res Pap. 1:86 pp.

    Google Scholar 

  • Lettau HH and Davidson B (eds) (1957) Exploring the Atmosphere’s First Mile. Pergamon Press, London, New York, 376 pp.

    Google Scholar 

  • Liebethal C, Huwe B and Foken T (2005) Sensitivity analysis for two ground heat flux calculation approaches. Agrical Forest Meteorol. 132:253–262.

    Google Scholar 

  • Liebethal C and Foken T (2007) Evaluation of six parameterization approaches for the ground heat flux. Theor Appl Climat. 88:43–56.

    Google Scholar 

  • Liou KN (1992) Radiation and Cloud Processes in the Atmosphere. Oxford University Press, Oxford, 487 pp.

    Google Scholar 

  • Lothon M, Lohou F, Pino D, Couvreux F, Pardyjak ER, Reuder J, Vilà-Guerau de Arellano J, Durand P, Hartogensis O, Legain D, Augustin P, Gioli B, Lenschow DH, Faloona I, Yagüe C, Alexander DC, Angevine WM, Bargain E, Barrié J, Bazile E, Bezombes Y, Blay-Carreras E, van de Boer A, Boichard JL, Bourdon A, Butet A, Campistron B, de Coster O, Cuxart J, Dabas A, Darbieu C, Deboudt K, Delbarre H, Derrien S, Flament P, Fourmentin M, Garai A, Gibert F, Graf A, Groebner J, Guichard F, Jiménez MA, Jonassen M, van den Kroonenberg A, Magliulo V, Martin S, Martinez D, Mastrorillo L, Moene AF, Molinos F, Moulin E, Pietersen HP, Piguet B, Pique E, Román-Cascón C, Rufin-Soler C, Saïd F, Sastre-Marugán M, Seity Y, Steeneveld GJ, Toscano P, Traullé O, Tzanos D, Wacker S, Wildmann N and Zaldei A (2014) The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence. Atmos Chem Phys. 14:10931–10960.

    Google Scholar 

  • Lumley JL and Yaglom AM (2001) A century of turbulence. Flow, Turbulence and Combustion. 66:241–286.

    Google Scholar 

  • Mitsuta Y (1966) Sonic anemometer-thermometer for general use. J Meteor Soc Japan. Ser. II, 44:12–24.

    Google Scholar 

  • Miyake M, Stewart RW, Burling RW, Tsvang LR, Kaprov BM and Kuznecov OA (1971) Comparison of acoustic instruments in an atmospheric flow over water. Boundary-Layer Meteorol. 2:228–245.

    Google Scholar 

  • Monin AS and Obukhov AM (1954) Osnovnye zakonomernosti turbulentnogo peremesivanija v prizemnom sloe atmosfery (Basic laws of turbulent mixing in the atmosphere near the ground). Trudy geofiz inst AN SSSR. 24 (151):163–187.

    Google Scholar 

  • Monin AS and Yaglom AM (1973) Statistical Fluid Mechanics: Mechanics of Turbulence, Volume 1. MIT Press, Cambridge, London, 769 pp.

    Google Scholar 

  • Monin AS and Yaglom AM (1975) Statistical Fluid Mechanics: Mechanics of Turbulence, Volume 2. MIT Press, Cambridge, London, 874 pp.

    Google Scholar 

  • Montgomery RB (1948) Vertical eddy flux of heat in the atmosphere. Journal Meteorology. 5:265–274.

    Google Scholar 

  • Obukhov AM (1946) Turbulentnost’ v temperaturnoj - neodnorodnoj atmosfere (Turbulence in an atmosphere with a non-uniform temperature). Trudy Inst Theor Geofiz AN SSSR 1:95–115.

    Google Scholar 

  • Obukhov AM (1951) Charakteristiki mikrostruktury vetra v prizemnom sloje atmosfery (Characteristics of the micro-structure of the wind in the surface layer of the atmosphere). Izv AN SSSR, ser Geofiz. 3:49–68.

    Google Scholar 

  • Obukhov AM (1960) O strukture temperaturnogo polja i polja skorostej v uslovijach konvekcii (Structure of the temperature and velocity fields under conditions of free convection). Izv AN SSSR, ser Geofiz. 9:1392–1396.

    Google Scholar 

  • Obukhov AM (1971) Turbulence in an atmosphere with a non-uniform temperature. Boundary-Layer Meteorol. 2:7–29.

    Google Scholar 

  • Oertel H (ed) (2004) Prandtl’s essentials of fluid mechanics. Springer, New York, VII, 723 pp.

    Google Scholar 

  • Oke TR (1987) Boundary Layer Climates. Methuen, New York, 435 pp.

    Google Scholar 

  • Oncley SP, Foken T, Vogt R, Kohsiek W, DeBruin HAR, Bernhofer C, Christen A, van Gorsel E, Grantz D, Feigenwinter C, Lehner I, Liebethal C, Liu H, Mauder M, Pitacco A, Ribeiro L and Weidinger T (2007) The energy balance experiment EBEX-2000, Part I: Overview and energy balance. Boundary-Layer Meteorol. 123:1–28.

    Google Scholar 

  • Orlanski I (1975) A rational subdivision of scales for atmospheric processes. Bull. Am. Meteorol. Soc. 56:527–530.

    Google Scholar 

  • Persson POG, Fairall CW, Andreas EL, Guest PS and Perovich DK (2002) Measurements near the atmospheric surface flux group tower at sheba: Near-surface conditions and surface energy budget. J Geophys Res. 107:8045.

    Google Scholar 

  • Poulos GS, Blumen W, Fritts DC, Lundquist JK, Sun J, Burns SP, Nappo C, Banta R, Newsom R, Cuxart J, Terradellas E, Balsley B and Jensen M (2002) CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull Amer Meteorol Soc. 83:55–581.

    Google Scholar 

  • Prandtl L (1925) Bericht über Untersuchungen zur ausgebildeten Turbulenz. Z angew Math Mech. 5:136–139.

    Google Scholar 

  • Priestley CHB and Swinbank WC (1947) Vertical transport of heat by turbulence in the atmosphere. Proceedings Royal Society London. A189:543–561.

    Google Scholar 

  • Reynolds O (1894) On the dynamical theory of turbulent incompressible viscous fluids and the determination of the criterion. Phil Trans R Soc London. A 186:123–161.

    Google Scholar 

  • Richardson LF (1920) The supply of energy from and to atmospheric eddies. Proceedings Royal Society. A 97:354–373.

    Google Scholar 

  • Roedel W and Wagner T (2011) Physik unserer Umwelt: Die Atmosphäre. Springer, Berlin, Heidelberg pp.

    Google Scholar 

  • Schlichting H and Gersten K (2003) Boundary-Layer Theory. McGraw Hill, New York, XXIII, 799 pp.

    Google Scholar 

  • Schmidt W (1925) Der Massenaustausch in freier Luft und verwandte Erscheinungen. Henri Grand Verlag, Hamburg, 118 pp.

    Google Scholar 

  • Schoonmaker PK (1998) Paleoecological perspectives on ecological scales. In: Peterson DL and Parker VT (eds.), Ecological Scale. Columbia University Press, New York, 79–103.

    Google Scholar 

  • Schotland RM (1955) The measurement of wind velocity by sonic waves. J Meteorol. 12:386–390.

    Google Scholar 

  • Seibert P, Beyrich F, Gryning S-E, Joffre S, Rasmussen A and Tercier P (2000) Review and intercomparison of operational methods for the determination of the mixing height. Atmos Environm. 34:1001–1027.

    Google Scholar 

  • Sellers PJ, Hall FG, Asrar G, Strebel DE and Murphy RE (1988) The first ISLSCP field experiment (FIFE). Bull Amer Meteorol Soc. 69:22–27.

    Google Scholar 

  • Shen S and Leclerc MY (1995) How large must surface inhomogeneous be before they influence the convective boundary layer structure? A case study. Quart J Roy Meteorol Soc. 121:1209–1228.

    Google Scholar 

  • Stull RB (1988) An Introduction to Boundary Layer Meteorology. Kluwer Acad. Publ., Dordrecht, Boston, London, 666 pp.

    Google Scholar 

  • Suomi VE (1957) Sonic anemometer - University of Wisconsin. In: Lettau HH and Davidson B (eds.), Exploring the atmosphere’s first mile, vol 1. Pergamon Press, London, New York, 256–266.

    Google Scholar 

  • Sutton OG (1953) Micrometeorology. McGraw Hill, New York, 333 pp.

    Google Scholar 

  • Swinbank WC (1951) The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere. J Meteorol. 8:135–145.

    Google Scholar 

  • Taylor GI (1915) Eddy motion in the atmosphere. Phil Trans R Soc London. A 215:1–26.

    Google Scholar 

  • Taylor GI (1938) The spectrum of turbulence. Proceedings Royal Society London. A 164:476–490.

    Google Scholar 

  • Trenberth KE, Fasullo JT and Kiehl J (2009) Earth’s Global Energy Budget. Bull Amer Meteorol Soc. 90:311–323.

    Google Scholar 

  • Tsvang LR, Kaprov BM, Zubkovskij SL, Dyer AJ, Hicks BB, Miyake M, Stewart RW and McDonald JW (1973) Comparison of turbulence measurements by different instuments; Tsimlyansk field experiment 1970. Boundary-Layer Meteorol. 3:499–521.

    Google Scholar 

  • Tsvang LR, Zubkovskij SL, Kader BA, Kallistratova MA, Foken T, Gerstmann W, Przandka Z, Pretel J, Zelený J and Keder J (1985) International turbulence comparison experiment (ITCE-81). Boundary-Layer Meteorol. 31:325–348.

    Google Scholar 

  • Tsvang LR, Fedorov MM, Kader BA, Zubkovskii SL, Foken T, Richter SH and Zelený J (1991) Turbulent exchange over a surface with chessboard-type inhomogeneities. Boundary-Layer Meteorol. 55:141–160.

    Google Scholar 

  • Vogel H-J and Roth K (2003) Moving through scales of flow and transport in soil. J Hydrol. 272:95–106.

    Google Scholar 

  • von Kármán T and Howarth L (1938) On the statistical theory of isotropic turbulence. Proceedings Royal Society London. A 164:192–215.

    Google Scholar 

  • Wendisch M and Yang P (2012) Theory of Atmospheric Radiative Transfer. Wiley & Sons, Inc., Weinheim pp.

    Google Scholar 

  • Wendling U, Fuchs P and Müller-Westermeier G (1997) Modellierung des Zusammenhangs von Globalstrahlung, Sonnenscheindauer und Bewölkungsgrad als Beitrag der Klimaüberwachung. Dt Wetterdienst, Forsch. Entwicklung, Arbeitsergebnisse. 45:29 pp.

    Google Scholar 

  • Wichura B, Buchmann N, Foken T, Mangold A, Heinz G and Rebmann C (2001) Pools und Flüsse des stabilen Kohlenstoffisotops 13C zwischen Boden, Vegetation und Atmosphäre in verschiedenen Pflanzengemeinschaften des Fichtelgebirges. Bayreuther Forum Ökologie. 84:123–153.

    Google Scholar 

  • Wieringa J (1980) A revaluation of the Kansas mast influence on measurements of stress and cup anemometer overspeeding. Boundary-Layer Meteorol. 18:411–430.

    Google Scholar 

  • Wild M, Folini D, Schär C, Loeb N, Dutton E and König-Langlo G (2013) The global energy balance from a surface perspective. Climate Dynamics. 40:3107–3134.

    Google Scholar 

  • Wild M, Folini D, Hakuba M, Schär C, Seneviratne S, Kato S, Rutan D, Ammann C, Wood E and König-Langlo G (2015) The energy balance over land and oceans: an assessment based on direct observations and CMIP5 climate models. Climate Dynamics. 44:3393–3429.

    Google Scholar 

  • Wulfmeyer V, Behrendt A, Kottmeier C, Corsmeier U, Barthlott C, Craig G, Hagen M, Althausen D, Aoshima F, Arpagaus M, Bauer HS, Bennett L, Blyth A, Brandau C, Champollion C, Crewell S, Dick G, Di Girolamo P, Dorninger M, Dufournet Y, Eigenmann R, Engelmann R, Flamant C, Foken T, Gorgas T, Grzeschik M, Handwerker J, Hauck C, Höller H, Junkermann W, Kalthoff N, Kiemle C, Klink S, König M, Krauß L, Long CN, Madonna F, Mobbs S, Neininger B, Pal S, Peters G, Pigeon G, Richard E, Rotach M, Russchenberg H, Schwitalla T, Smith V, Steinacker R, Trentmann J, Turner DD, van Baelen J, Vogt S, Volkert H, T. W, Wernli H, Wieser A and Wirth M (2011) The convective and orographically induced precipitation study (COPS): The scientific strategy, the field phase, and research highlights. Quart J Roy Meteorol Soc. 137:3–30.

    Google Scholar 

  • Wyngaard JC, Coté OR and Izumi Y (1971) Local free convection, similarity and the budgets of shear stree and heat flux. J Atmos Sci. 28:1171–1182.

    Google Scholar 

  • Wyngaard JC, Businger JA, Kaimal JC and Larsen SE (1982) Comments on ‘A revaluation of the Kansas mast influence on measurements of stress and cup anemometer overspeeding’. Boundary-Layer Meteorol. 22:245–250.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Foken .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Foken, T. (2017). General Basics. In: Micrometeorology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25440-6_1

Download citation

Publish with us

Policies and ethics