Skip to main content

Radiation Phenomena behind Shock Waves

  • Chapter
  • First Online:
High Temperature Phenomena in Shock Waves

Part of the book series: Shock Wave Science and Technology Reference Library ((SHOCKWAVES,volume 7))

Introduction

Shock waves produce hot gases, which radiate. Radiation is a full partner of the many physical and chemical processes which have to be taken into account in physical gasdynamics in hot gases [1-3]. As the emitted radiation is linked to the thermochemical state of the media, it has been widely used as a non disturbing tool to characterize the state of media behind shock waves. The emitted radiation may also contribute to the heat flux suffered by an obstacle. This contribution will be important for a vehicle entering an atmosphere [4] at very high speed such those experienced in aerocapture entry or lunar return for example. For vehicles entering the Earth’s atmosphere at velocity higher than 10km/s, the role of radiative heating in the total flux balance becomes essential. For Galileo entry into Jovian atmosphere the contribution of radiation was dominant for most of the entry trajectory. Accurate predictions of the non-equilibrium radiation in shock layers are thus required for efficient design of thermal protection systems. Radiation may also modify the gas dynamics. The emitted photons can either leave the flow, giving rise to the so-called radiative cooling, or can be re-absorbed, contributing to the transport of energy. Under some conditions, the processes of emission and absorption of photons have to be included in the equations describing the evolution of atomic and molecular internal states. As the emission and absorption coefficients depend on the internal state of gases, the radiation field and the internal state of gases must be determined self-consistently. The role of radiation is particularly important in the so-called radiative shocks [1,2], which are present in a wide range of astronomical objects and which can be generated in the laboratory using high-power lasers. In these high Mach number shocks, the radiation energy density, flux and stress tensor have to be included in the set of conservative equations; furthermore the medium may be photoionized ahead of the shock front giving rise to precursors which modify the shock jump relations. In these cases, the radiation drives the flow. In the present paper, we will mainly be concerned by radiation in hypersonic flows encountered in atmospheric entries. The incident probe velocities range from about 5 km/s for a low-speed Mars or Titan entry to almost 60 km/s for a polar probe to Jupiter. At these speeds, a strong shock wave forms in front of the entering probe that dissociates and, for the highest velocities, ionizes the gas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zeldovich, Y.B., Raizer, Y.P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Academic Press, New York (1966)

    Google Scholar 

  2. Mihalas, D., Mihalas, B.W.: Foundations of Radiation Hydrodynamics. Dover Publications, Inc. (1999)

    Google Scholar 

  3. Park, C.: Nonequilibrium hypersonic aerothermodynamics. A Wiley-Interscience Publication, New York (1990)

    Google Scholar 

  4. Park, C.: Overview of Radiation Problems in Planetary Entry. Proceedings of the International Workshop on Radiation of High Temperature Gases in Atmospheric Entry, ESA-SP-583 (2005)

    Google Scholar 

  5. Park, C.: Nonequilibrium Air Radiation (NEQAIR) Program: User’s Manual. NASA TM 86707 (1995)

    Google Scholar 

  6. Hartung, L.C.: Predicting radiative heat transfer in thermo-chemical nonequilibrium flow-fields: theory and user’s manual for the LORAN code. NASA TM 4564 (1994)

    Google Scholar 

  7. Fujita, K., Abe, T.: SPRADIAN. Structured Package for Radiation Analysis: theory and application, ISAS Report No. 669 (1997)

    Google Scholar 

  8. Surzhikov, S.: Radiation Modeling and Spectral Data. VKI Lecture Series 2002-2007 on Physico-Chemical Models for High Enthalpy and Plasma Flow, VKI (2002)

    Google Scholar 

  9. Laux, C.: Radiation and nonequilibrium collisional-radiative models. In: VKI Lecture Series 2002-2007 on Physico-Chemical Models for High Enthalpy and Plasma Flows Modeling, VKI (2002)

    Google Scholar 

  10. Smith, A., Wood, A., Dubois, J., Fertig, M., Pfeiffer, N.: Technical Paper 3. ESTEC contract11148/94/NL/FG, FGE TR28/96 (2006)

    Google Scholar 

  11. Johnston, C., Hollis, B., Sutton, K.: Journal of Spacecraft and Rockets 45, 865 (2008)

    Article  Google Scholar 

  12. Passarinho, P., Lino da Silva, M.: Journal of Molecular Spectroscopy 236, 148 (2006)

    Article  Google Scholar 

  13. Perrin, M.Y., Rivière, P., Soufiani, A.: Radiation database for Earth and Mars entry. In: AVT-162 RTO AVT/VKI Lecture Series on Non-Equilibrium Gas Dynamics, from Physical Models to Hypersonic Flights, VKI (2008)

    Google Scholar 

  14. Chauveau, S., Perrin, M.Y., Rivière, P., Soufiani, A.: Journal of Quantitative Spectroscopy and Radiative Transfer 72, 503 (2002)

    Google Scholar 

  15. Chauveau, S., Deron, C., Perrin, M.Y., Rivière, P., Soufiani, A.: Journal of Quantitative Spectroscopy and Radiative Transfer 77, 113-130 (2003)

    Google Scholar 

  16. Babou, Y., Rivière, P., Perrin, M.Y., Soufiani, A.: Journal of Quantitative Spectroscopy and Radiative Transfer 110, 89 (2009)

    Google Scholar 

  17. Hollas, J.M.: High Resolution Spectroscopy. Butterworths (1982)

    Google Scholar 

  18. Cowan, R.D.: The Theory of Atomic Structure and Spectra. University of California Press, Berkeley (1981)

    Google Scholar 

  19. Herzberg, G.: Molecular Spectra and Molecular Structure: Spectra of Diatomic Molecules, 2nd edn. Van Nostrand Reinhold, New York (1950)

    Google Scholar 

  20. Lefebvre-Brion, H., Field, R.W.: Perturbations in the Spectra of Diatomic Molecules. Academic Press Inc. (1986)

    Google Scholar 

  21. Griem, H.R.: Principles of plasma spectroscopy. Cambridge University Press (1997)

    Google Scholar 

  22. Ralchenko, Y., Kramida, A.E., Reader, J.: NIST ASD Team, NIST Atomic Spectra Database (version 4.0), National Institute of Standards and Technology, Gaithersburg, MD (2010), http://physics.nist.gov/asd

  23. The Opacity Project Team, The opacity Project, vol.1. Institute of Physics Publishing, Bristol and Philadelphia (1995), http://cdsweb.u-strasbg.fr/topbase/topbase.html

  24. Traving, G.: Plasma Diagnostics. McGraw-Hill Book Company, New York (1964)

    Google Scholar 

  25. Rivière, P.: Journal of Quantitative Spectroscopy and Radiative Transfer 73, 91 (2002)

    Google Scholar 

  26. Babou, Y., Riviere, P., Perrin, M.Y., Soufani, A.: International Journal of Thermophysics 30, 416 (2009)

    Google Scholar 

  27. Zare, R.N., Schmeltejopf, A.L., Harrop, W.J., Albritton, D.L.: Journal of Molecular Spectroscopy 46, 37 (1973)

    Google Scholar 

  28. Kovacs, I.: Rotational structure in the spectra of diatomic molecules. American Elsevier Publishing company Inc., New York (1969)

    Google Scholar 

  29. Whiting, E.E., Schadee, A., Tatum, J.B., Hougen, J.T., Nicholls, R.W.: Journal of Molecular Spectroscopy 80, 249 (1980)

    Google Scholar 

  30. Hartmann, J.M., Boulet, C., Robert, D.: Collisional effects on molecular spectra. Elsevier (2008)

    Google Scholar 

  31. Breene, R.G.: Applied Optics 6, 141 (1967)

    Google Scholar 

  32. Lamet, J.M., Babou, Y., Rivière, P., Perrin, M.Y., Soufiani, A.: Journal of Quantitative Spectroscopy and Radiative Transfer 109, 235 (2008)

    Google Scholar 

  33. Morris, J.C., Key, R.U., Bach, G.R.: Physical Review 159, 113 (1967); Morris, J.C., Krey, R.U., Garrison, R.L.: Physical Review 180, 167 (1969)

    Google Scholar 

  34. Cruden, B.A., Martinez, R., Grinstead, J.H., Olejniczak, J.: AIAA Paper 2009-4240 (2009)

    Google Scholar 

  35. Yamada, G., Takayanagi, H., Suzuki, T., Fujita, K.: AIAA paper 2009-4254 (2009)

    Google Scholar 

  36. Cauchon, D.L.: Radiative heating results from the FireII flight experiment at a reentry velocity of 11.4 kilometers per second, NASA TM X-1402

    Google Scholar 

  37. Mazoue, F., Marraffa, L.: Determination of the radiation emission during the FIRE II entry. In: Proceedings of the 2nd International Workshop on Radiation of High Temperature Gases in Atmospheric Entry, Rome, September 6-8 (2006)

    Google Scholar 

  38. Lamet, J.M.: Transferts radiatifs dans les écoulements hypersoniques de rentrée atmosphérique terrestre, Thèse de doctorat de l’Ecole Centrale, Paris (2009)

    Google Scholar 

  39. Lowke, J.J.: Journal of Quantitative Spectroscopy and Radiative Transfer 14, 111 (1974)

    Google Scholar 

  40. Holstein, H.: Physical Review 72, 1212 (1947)

    Google Scholar 

  41. Holstein, H.: Physical Review 83, 1159 (1951)

    Google Scholar 

  42. Irons, F.E.: Journal of Quantitative Spectroscopy and Radiative Transfer 22, 1 (1979)

    Google Scholar 

  43. Bourdon, A., Térésiak, Y., Vervisch, P.: Physical Review E 57, 4684 (1998)

    Google Scholar 

  44. Pestehe, S.J., Tallents, G.J.: Journal of Quantitative Spectroscopy and Radiative Transfer 72, 853 (2002)

    Google Scholar 

  45. Fisher, V.I., Fisher, D.V., Maron, Y.: High Energy Density Physics 3, 283 (2007)

    Google Scholar 

  46. Novikov, V.G., Ivanov, V.V., Koshelev, K.N., Krivtsun, V.M., Solomyannaya, A.D.: High Energy Density Physics 3, 198 (2007)

    Google Scholar 

  47. Sohn, I., Li, Z., Levin, D.A.: AIAA Paper 2011-533 (2011)

    Google Scholar 

  48. Goody, R., Yung, Y.: Atmospheric Radiation Oxford Univ. Press, New York (1989)

    Google Scholar 

  49. Taine, J., Soufiani, A.: Adv. Heat Transfer 33, 295 (1999)

    Google Scholar 

  50. Ludwig, C., Malkmus, W., Reardon, J., Thomson, J.: Handbook of infrared radiation from combustion gases, Technical Report NASA SP-3080, Washington DC (1973)

    Google Scholar 

  51. Young, S.: Journal of Quantitative Spectroscopy and Radiative Transfer 15, 483 (1975)

    Google Scholar 

  52. Young, S.: Journal of Quantitative Spectroscopy and Radiative Transfer 18, 1 (1977)

    Google Scholar 

  53. Lamet, J.-M., Rivière, P., Perrin, M.-Y., Soufiani, A.: Journal of Quantitative Spectroscopy and Radiative Transfer 111, 87 (2010)

    Google Scholar 

  54. Rivière, P., Soufiani, A.: Journal of Quantitative Spectroscopy and Radiative Transfer 112, 475–485 (2011)

    Article  Google Scholar 

  55. Rivière, P., Soufiani, A., Perrin, M.-Y., Riad, H., Gleizes, A.: Journal of Quantitative Spectroscopy and Radiative Transfer 56, 29 (1996)

    Google Scholar 

  56. Kahhali, N., Rivière, P., Perrin, M.-Y., Gonnet, J.-P., Soufiani, A.: J. Phys. D: Appl. Phys. 43, 425204 (2010)

    Article  Google Scholar 

  57. Zhang, H., Modest, M.F.: Journal of Quantitative Spectroscopy and Radiative Transfer 73, 349 (2002)

    Google Scholar 

  58. Bansal, A., Modest, M.F.: AIAA Paper 2011-247 (2011)

    Google Scholar 

  59. Chandrasekhar, S.: Radiative Transfer. Dover Publications Inc. (1960)

    Google Scholar 

  60. Siegel, R., Howell, J.R.: Thermal Radiation Heat Transfer. Taylor&Francis (2002)

    Google Scholar 

  61. Modest, M.F.: Radiative Heat Transfer. Elsevier (2003)

    Google Scholar 

  62. Carlson, B.G., Lathrop, K.D.: Discrete-ordinates angular quadrature of the neutron transport equation, Technical Information Series Report LASL-3186, Los Alamos Scientific Laboratory (1964)

    Google Scholar 

  63. Larsen, E.W., Thömmes, G., Klar, A., Seaïd, M., Götz, T.: J. Comput. Phys. 183, 652 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  64. Ségur, P., Bourdon, A., Marode, E., Bessieres, D., Paillol, J.H.: Plasma Sources Sci. Technol. 15, 648 (2006)

    Article  Google Scholar 

  65. Rouzeau, O., Tessé, L., Soubrié, T., Soufiani, A., Rivière, P., Zeitoun, D.: Journal of Thermophysics and Heat Transfer 22, 10 (2008)

    Article  Google Scholar 

  66. Lamet, J.M., Perrin, M.-Y., Soufiani, A., Rivière, P., Tessé, L.: In: Proc. Third Int. Workshop on Radiation of High Temperature Gases in Atmospheric Entry. ESA, Heraklion (2008)

    Google Scholar 

  67. Ozawa, T., Zhong, J., Levin, D.A.: Phys. Fluids 20, 046102 (2008)

    Google Scholar 

  68. Gnoffo, P.A., Gupta, R.N., Shinn, J.L.: Conservation Equations and Physical Models for Hypersonic Air Flows in Thermal and Chemical Nonequilibrium, NASA TP-2867, NASA Langley Research Center, Hampton, VA 23665-5225 (1989)

    Google Scholar 

  69. Capitelli, M. (ed.): Non-equilibrium vibrational kinetics, Topics in Current Physics, vol. 39. Springer, Heidelberg (1986)

    Google Scholar 

  70. Panesi, M., Magin, T., Bourdon, A., Bultel, A., Chazot, O.: Journal of Thermophysics and Heat Transfer 23, 236 (2009)

    Article  Google Scholar 

  71. Park, C.: AIAA Paper 84-0306 (1984)

    Google Scholar 

  72. Magin, T.E., Caillault, L., Bourdon, A., Laux, C.O.: J. Geophys. Research 111, E07S12 (2006)

    Google Scholar 

  73. Gökçen, T., Park, C.: AIAA paper 91-0570 (1991)

    Google Scholar 

  74. Hartung, L.C., Mitcheltree, R.A., Gnoffo, P.A.: J. Thermophys. Heat Transfer 8(2), 244 (1994)

    Article  Google Scholar 

  75. Johnston, C.: Nonequilibrium Shock-Layer Radiative Heating for Earth and Titan Entry. PhD thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia (November 17, 2006)

    Google Scholar 

  76. Kay, R.D., Gogel, T.H.: AIAA Paper 94-2091 (1994)

    Google Scholar 

  77. Gnoffo, P.A., Johnston, C.O., Thompson, R.A.: AIAA Paper 2009-1399 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Perrin, M.Y., Riviére, P., Soufiani, A. (2012). Radiation Phenomena behind Shock Waves. In: Brun, R. (eds) High Temperature Phenomena in Shock Waves. Shock Wave Science and Technology Reference Library, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25119-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25119-1_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25118-4

  • Online ISBN: 978-3-642-25119-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics