Skip to main content

Feature-Based Locomotion with Inverse Branch Kinematics

  • Conference paper
Motion in Games (MIG 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7060))

Included in the following conference series:

Abstract

We propose a novel Inverse Kinematics based deformation method that introduces flexibility and parameterization to motion graphs without degrading the quality of the synthesized motions. Our method deforms the transitions of a motion graph-like structure by first assigning to each transition a continuous rotational range that guarantees not to exceed the predefined global transition cost threshold. The deformation procedure improves the reachability of motion graphs to precise locations and consequently reduces the time spent during search. Furthermore, our method includes a new motion graph construction method based on geometrical segmentation features, and employs a fast triangulation based search pruning technique that confines the search to a free channel and avoids expensive collision checking. The results obtained by the proposed methods were evaluated and quantified, and they demonstrate significant improvements in comparison with traditional motion graph approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arikan, O., Forsyth, D.A.: Synthesizing constrained motions from examples. Proceedings of SIGGRAPH 21(3), 483–490 (2002)

    MATH  Google Scholar 

  2. Arikan, O., Forsyth, D.A., O’Brien, J.F.: Motion synthesis from annotations. Proceedings of SIGGRAPH 22(3), 402–408 (2003)

    Article  MATH  Google Scholar 

  3. Beaudoin, P., Coros, S., van de Panne, M., Poulin, P.: Motion-motif graphs. In: Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA), pp. 117–126 (2008)

    Google Scholar 

  4. Choi, M.G., Lee, J., Shin, S.Y.: Planning biped locomotion using motion capture data and probabilistic roadmaps. Proceedings of SIGGRAPH 22(2), 182–203 (2002)

    Article  Google Scholar 

  5. Esteves, C., Arechavaleta, G., Pettré, J., Laumond, J.-P.: Animation planning for virtual characters cooperation. ACM Transaction on Graphics 25(2), 319–339 (2006)

    Article  Google Scholar 

  6. Gleicher, M., Shin, H.J., Kovar, L., Jepsen, A.: Snap-together motion: assembling run-time animations. In: Proceedings of the Symposium on Interactive 3D Graphics and Games (I3D), NY, USA, pp. 181–188 (2003)

    Google Scholar 

  7. Kallmann, M.: Shortest paths with arbitrary clearance from navigation meshes. In: Proceedings of the Eurographics / SIGGRAPH Symposium on Computer Animation (SCA) (2010)

    Google Scholar 

  8. Kim, M., Hyun, K., Kim, J., Lee, J.: Synchronized multi-character motion editing. ACM Trans. Graph. 28(3), 1–9 (2009)

    Google Scholar 

  9. Kovar, L., Gleicher, M., Pighin, F.H.: Motion graphs. Proceedings of SIGGRAPH 21(3), 473–482 (2002)

    Google Scholar 

  10. Lau, M., Kuffner, J.J.: Behavior planning for character animation. In: 2005 ACM SIGGRAPH / Eurographics Symposium on Computer Animation, pp. 271–280 (August 2005)

    Google Scholar 

  11. Lau, M., Kuffner, J.J.: Precomputed search trees: planning for interactive goal-driven animation. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA), pp. 299–308 (2006)

    Google Scholar 

  12. Lee, J., Chai, J., Reitsma, P., Hodgins, J.K., Pollard, N.: Interactive control of avatars animated with human motion data. Proceedings of SIGGRAPH 21(3), 491–500 (2002)

    Google Scholar 

  13. Zhao, S.K.L., Normoyle, A., Safonova, A.: Automatic construction of a minimum size motion graph. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2009)

    Google Scholar 

  14. Müller, M., Röder, T., Clausen, M.: Efficient content-based retrieval of motion capture data. In: Proceedings of SIGGRAPH, pp. 677–685. ACM Press, New York (2005)

    Google Scholar 

  15. Pan, J., Zhang, L., Lin, M., Manocha, D.: A hybrid approach for synthesizing human motion in constrained environments. In: Conference on Computer Animation and Social Agents, CASA (2010)

    Google Scholar 

  16. Ren, C., Zhao, L., Safonova, A.: Human motion synthesis with optimization-based graphs. Computer Graphics Forum (In Proc. of Eurographics 2010, Sweden) 29(2) (2010)

    Google Scholar 

  17. Safonova, A., Hodgins, J.K.: Construction and optimal search of interpolated motion graphs. ACM Transactions on Graphics (Proceedings. of SIGGRAPH) 26(3) (2007)

    Google Scholar 

  18. Shin, H.J., Oh, H.S.: Fat graphs: constructing an interactive character with continuous controls. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA), pp. 291–298 (2006)

    Google Scholar 

  19. Sung, M., Kovar, L., Gleicher, M.: Fast and accurate goal-directed motion synthesis for crowds. In: Proceedings of the Symposium on Computer Animation (SCA) (July 2005)

    Google Scholar 

  20. Treuille, A., Lee, Y., Popović, Z.: Near-optimal character animation with continuous control. In: Proceedings of ACM SIGGRAPH. ACM Press (2007)

    Google Scholar 

  21. van Basten, B.J.H., Egges, A., Geraerts, R.: Combinining path planners and motion graphs. Computer Animation and Virtual Worlds 21, 1–22 (2011)

    Google Scholar 

  22. Wang, L.-C.T., Chen, C.C.: A combined optimization method for solving the inverse kinematics problem of mechanical manipulators. IEEE Transactions on Robotics and Automation 7(4), 489–499 (1991)

    Article  MathSciNet  Google Scholar 

  23. Zhao, L., Safonova, A.: Achieving good connectivity in motion graphs. In: Proceedings of the 2008 ACM/Eurographics Symposium on Computer Animation (SCA), pp. 127–136 (July 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mahmudi, M., Kallmann, M. (2011). Feature-Based Locomotion with Inverse Branch Kinematics. In: Allbeck, J.M., Faloutsos, P. (eds) Motion in Games. MIG 2011. Lecture Notes in Computer Science, vol 7060. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25090-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25090-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25089-7

  • Online ISBN: 978-3-642-25090-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics