Skip to main content

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 28))

Abstract

Bayesian decision theory provides a strong theoretical basis for a single-participant decision making under uncertainty, that can be extended to multiple-participant decision making. However, this theory (similarly as others) assumes unlimited abilities of a participant to probabilistically model the participant’s environment and to optimise its decision-making strategy. The proposed methodology solves knowledge and preference elicitation, as well as sharing of individual, possibly fragmental, knowledge and preferences among imperfect participants. The approach helps to overcome the non-realistic assumption on participants’ unlimited abilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Athans, M.: The role and use of the stochastic linear-quadratic-Gaussian problem in control system design. IEEE Transactions on Automatic Control 16(6), 529–552 (1971)

    Article  MathSciNet  Google Scholar 

  2. Bernardo, J.M.: Expected information as expected utility. The Annals of Statistics 7(3), 686–690 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bernstein, D., Amato, C., Hansen, E., Zilberstein, S.: Policy iteration for decentralized control of Markov decision processes. J. of Artificial Intelligence Research 34, 89–132 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Bertsekas, D.: Dynamic Programming and Optimal Control, 2nd edn. Athena Scientific, Nashua (2001)

    MATH  Google Scholar 

  5. Chajewska, U., Koller, D., Parr, R.: Making rational decisions using adaptive utility elicitation. In: Proc. of the Seventeenth National Conference on Artificial Intelligence, pp. 363–369 (2000)

    Google Scholar 

  6. Cooke, N.: Varieties of knowledge elicitation techniques. Int. J. of Human-Computer Studies 41, 801–849 (1994)

    Article  MATH  Google Scholar 

  7. Fishburn, P.: Utility Theory for Decision Making. J. Wiley, New York (1970)

    MATH  Google Scholar 

  8. Genest, C., Zidek, J.: Combining probability distributions: A critique and annotated bibliography. Statistical Science 1(1), 114–148 (1986)

    Article  MathSciNet  Google Scholar 

  9. Guy, T.V., Kárný, M.: Stationary fully probabilistic control design. In: Filipe, J., Cetto, J.A., Ferrier, J.L. (eds.) Proc. of the Second Int. Conference on Informatics in Control, Automation and Robotics, pp. 109–112. INSTICC, Barcelona (2005)

    Google Scholar 

  10. Harsanyi, J.: Games with incomplete information played by Bayesian players, I–III. Management Science 50(12) (2004) (supplement)

    Google Scholar 

  11. Kárný, M.: Towards fully probabilistic control design. Automatica 32(12), 1719–1722 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kárný, M.: Bayesian paradigm and fully probabilistic design. In: Preprints of the 17th IFAC World Congress. IFAC (2008)

    Google Scholar 

  13. Kárný, M., Böhm, J., Guy, T.V., Jirsa, L., Nagy, I., Nedoma, P., Tesař, L.: Optimized Bayesian Dynamic Advising: Theory and Algorithms. Springer, London (2006)

    Google Scholar 

  14. Kárný, M., Guy, T.: Preference elicitation in fully probabilistic design of decision strategies. In: Proc. of the 49th IEEE Conference on Decision and Control. IEEE, Los Alamitos (2010)

    Google Scholar 

  15. Kárný, M., Guy, T.V.: Fully probabilistic control design. Systems & Control Letters 55(4), 259–265 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kárný, M., Guy, T.V., Bodini, A., Ruggeri, F.: Cooperation via sharing of probabilistic information. Int. J. of Computational Intelligence Studies, 139–162 (2009)

    Google Scholar 

  17. Kárný, M., Kroupa, T.: Axiomatisation of fully probabilistic design. Information Sciences (2010) (under revision)

    Google Scholar 

  18. Kuhn, H., Tucker, A.: Nonlinear programming. In: Proc. of 2nd Berkeley Symposium, pp. 481–492. University of California Press, Berkeley (1951)

    Google Scholar 

  19. Kullback, S., Leibler, R.: On information and sufficiency. Annals of Mathematical Statistics 22, 79–87 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lee, C., Budhiraja, A., Chen, L.: A survey of numerical methods for nonlinear filtering problems. Physica D: Nonlinear Phenomena 230, 27–36 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Meditch, J.: Stochastic Optimal Linear Estimation and Control. Mc. Graw Hill, New York (1969)

    MATH  Google Scholar 

  22. Peterka, V.: Bayesian system identification. In: Eykhoff, P. (ed.) Trends and Progress in System Identification, pp. 239–304. Pergamon Press, Oxford (1981)

    Google Scholar 

  23. Savage, L.: Foundations of Statistics. Wiley, New York (1954)

    Google Scholar 

  24. Schneeweiss, C.: Distributed Decision Making. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  25. Sečkárová, V.: Supra-Bayesian approach to merging of incomplete and incompatible data. In: Guy, T., Karny, M., Wolpert, D. (eds.) Decision Making with Multiple Imperfect Decision Makers. UTIA (2010)

    Google Scholar 

  26. Shore, J., Johnson, R.: Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Transactions on Information Theory 26(1), 26–37 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  27. Si, J., Barto, A., Powell, W., Wunsch, D. (eds.): Handbook of Learning and Approximate Dynamic Programming. Wiley-IEEE Press, Danvers (2004)

    Google Scholar 

  28. Su, X., Khoshgoftaar, T.: A survey of collaborative filtering techniques. In: Advances in Artificial Intelligence, pp. 27–36 (2007)

    Google Scholar 

  29. Vladimirov, V.: Generalized Functions in Mathematical Physics. Mir Publishers, Moscow (1979)

    Google Scholar 

  30. Šindelář, J., Vajda, I., Kárný, M.: Stochastic control optimal in the Kullback sense. Kybernetika 44(1), 53–60 (2008)

    MathSciNet  MATH  Google Scholar 

  31. Wolpert, D., Kulkarni, N.: From wireless networks to sensor networks and onward to networked embedded control. In: Proc. 2008 NASA/ESA Conference on Adaptive Hardware and Systems, NASA (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kárný, M., Guy, T.V. (2012). On Support of Imperfect Bayesian Participants. In: Guy, T.V., Kárný, M., Wolpert, D.H. (eds) Decision Making with Imperfect Decision Makers. Intelligent Systems Reference Library, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24647-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24647-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24646-3

  • Online ISBN: 978-3-642-24647-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics