Skip to main content

Evolution Schemes

  • Chapter
  • First Online:
3+1 Formalism in General Relativity

Part of the book series: Lecture Notes in Physics ((LNP,volume 846))

  • 3577 Accesses

Abstract

Various approaches to evolve forward in time the 3+1 Einstein equations are discussed. After a review of constrained schemes, we focus on free evolution schemes, giving some details about the propagation of the constraints. Among the free evolution schemes, a particular important one is the BSSN scheme, which is presented here in details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The following computation is inspired from Frittelli’s article [24].

References

  1. Stewart, J.M.: The Cauchy problem and the initial boundary value problem in numerical relativity. Class Quantum Grav. 15, 2865 (1998)

    Article  ADS  MATH  Google Scholar 

  2. Friedrich, H., Rendall, A.: The Cauchy problem for the Einstein equations, in Einstein’s field equations and their physical implications: selected essays in honour of Jürgen Ehlers. In: Schmidt, B.G. (eds) Lecture Notes in Physics 540, pp. 127. Springer, Berlin (2000)

    Google Scholar 

  3. Lehner, L.: Numerical relativity: a review. Class. Quantum Grav. 18, R25 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Shinkai, H., Yoneda, G.: Re-formulating the Einstein equations for stable numerical simulations: Formulation problem in numerical relativity, to appear (?) in Progress in Astronomy and Astrophysics (Nova Science Publ.), preprint gr-qc/0209111

    Google Scholar 

  5. Shinkai, H.: Introduction to numerical relativity. Lecture Notes for APCTP Winter School on Gravitation and Cosmology, Jan 17–18 Seoul, Korea (2003) available at http://www.einstein1905.info/winterAPCTP/

  6. Baumgarte, T.W., Shapiro, S.L.: Numerical relativity and compact binaries. Phys. Rep. 376, 41 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Lehner, L. and Reula, O.: Status quo and open problems in the numerical construction of spacetimes, in Ref. [85] , p. 205.

    Google Scholar 

  8. Alcubierre, M.: Introduction to 3+1 Numerical Relativity. Oxford University Press, Oxford (2008)

    Book  MATH  Google Scholar 

  9. Baumgarte, T.W., Shapiro, S.L.: Numerical Relativity. Solving Einstein’s Equations on the Computer. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  10. Bardeen, J.M., Piran, T.: General relativistic axisymmetric rotating systems: coordinates and equations. Phys. Rep. 96, 206 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  11. Stark, R.F., Piran, T.: Gravitational-wave emission from rotating gravitational collapse. Phys. Rev. Lett. 55, 891 (1985)

    Article  ADS  Google Scholar 

  12. Evans, C.R.: An approach for calculating axisymmetric gravitational collapse. In: Centrella, J. (eds) Dynamical Spacetimes and Numerical Relativity, pp. 3. Cambridge University Press, Cambridge (1986)

    Google Scholar 

  13. Evans, C.R.: Enforcing the momentum constraints during axisymmetric spacelike simulations. In: Evans, C.R., Finn, L.S., Hobill, D.W. (eds) Frontiers in Numerical Relativity., pp. 194. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  14. Shapiro, S.L., Teukolsky, S.A.: Collisions of relativistic clusters and the formation of black holes. Phys. Rev. D 45, 2739 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  15. Abrahams, A.M., Cook, G.B., Shapiro, S.L., Teukolsky, S.A.: Solving Einstein’s equations for rotating spacetimes: Evolution of relativistic star clusters. Phys. Rev. D 49, 5153 (1994)

    Article  ADS  Google Scholar 

  16. Choptuik, M.W., Hirschmann, E.W., Liebling, S.L., Pretorius, F.: An axisymmetric gravitational collapse code. Class. Quantum Grav. 20, 1857 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Rinne, O.: Constrained evolution in axisymmetry and the gravitational collapse of prolate Brill waves. Class. Quantum Grav. 25, 135009 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  18. Anderson, M., Matzner, R.A.: Extended lifetime in computational evolution of isolated black holes. Found. Phys. 35, 1477 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Bonazzola, S., Gourgoulhon, E., Grandclément, P., Novak, J.: Constrained scheme for the Einstein equations based on the Dirac gauge and spherical coordinates. Phys. Rev. D 70, 104007 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  20. Cordero-Carrión, I., Cerdá-Durán, P., Dimmelmeier, H., Jaramillo, J.L., Novak, J., Gourgoulhon, E.: Improved constrained scheme for the Einstein equations: an approach to the uniqueness issue. Phys. Rev. D 79, 024017 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  21. Cordero-Carrión, I., Ibáñez, J.M., Gourgoulhon, E., Jaramillo, J.L., Novak, J.: Mathematical issues in a fully-constrained formulation of Einstein equations. Phys. Rev. D 77, 084007 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  22. Cordero-Carrión, I., Cerdá-Durán, P., Ibáñez, J.M.: Dynamical spacetimes and gravitational radiation in a fully constrained formulation. J. Phys.: Conf. Ser. 228, 012055 (2010)

    Article  ADS  Google Scholar 

  23. Cordero-Carrión I., Cerdá-Durán P., and Ibáñez J.M.: Gravitational waves in dynamical spacetimes with matter content in the Fully Constrained Formulation, preprint arXiv:1108.0571

    Google Scholar 

  24. Frittelli, S.: Note on the propagation of the constraints in standard 3+1 general relativity. Phys. Rev. D 55, 5992 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  25. Kidder, L.E., Lindblom, L., Scheel, M.A., Buchman, L.T., Pfeiffer, H.P.: Boundary conditions for the Einstein evolution system. Phys. Rev. D 71, 064020 (2005)

    Article  ADS  Google Scholar 

  26. Sarbach, O., Tiglio, M.: Boundary conditions for Einstein’s field equations: mathematical and numerical analysis. J. Hyper. Diff. Equat. 2, 839 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Reula O.: Strong Hyperbolicity, lecture at the VII Mexican School on Gravitation and Mathematical Physics (Playa del Carmen, Nov 26–Dec 2, Mexico, 2006); http://www.smf.mx/~gfm-smf/EscuelaVII/

  28. Kidder, L.E., Scheel, M.A., Teukolsky, S.A.: Extending the lifetime of 3D black hole computations with a new hyperbolic system of evolution equations. Phys. Rev. D 64, 064017 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  29. Frittelli, S., Reula, O.A.: First-order symmetric hyperbolic Einstein equations with arbitrary fixed gauge. Phys. Rev. Lett. 76, 4667 (1996)

    Article  ADS  Google Scholar 

  30. Anderson, A., York, J.W.: Fixing Einstein’s equations. Phys. Rev. Lett. 82, 4384 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Shibata, M., Nakamura, T.: Evolution of three-dimensional gravitational waves: Harmonic slicing case. Phys. Rev. D 52, 5428 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  32. Baumgarte, T.W., Shapiro, S.L.: Numerical integration of Einstein’s field equations. Phys. Rev. D 59, 024007 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  33. Nakamura, T., Oohara, K., Kojima, Y.: General relativistic collapse to black holes and gravitational waves from black holes. Prog. Theor. Phys. Suppl. 90, 1 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  34. De Donder, T.: La Gravifique einsteinienne, Gauthier-Villars, Paris (1921). http://www.numdam.org/item?id=AIHP_1930__1_2_77_0

  35. Friedrich, H.: On the hyperbolicity of Einstein’s and other gauge field equations. Commun. Math. Phys. 100, 525 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Garfinkle, D.: Harmonic coordinate method for simulating generic singularities. Phys. Rev. D 65, 044029 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  37. Gundlach, C., Calabrese, G., Hinder, I., Martí n-García, J.M.: Constraint damping in the Z4 formulation and harmonic gauge. Class. Quantum Grav. 22, 3767 (2005)

    Article  MATH  Google Scholar 

  38. Lindblom, L., Scheel, M.A., Kidder, L.E., Owen, R., Rinne, O.: A new generalized harmonic evolution system. Class. Quantum Grav. 23, S447 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Pretorius, F.: Numerical relativity using a generalized harmonic decomposition. Class. Quantum Grav. 22, 425 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Pretorius, F.: Evolution of binary black-hole spacetimes. Phys. Rev. Lett. 95, 121101 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  41. Pretorius, F.: Simulation of binary black hole spacetimes with a harmonic evolution scheme. Class. Quantum Grav. 23, S529 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. Pretorius, F.: Binary black hole coalescence. In: Colpi, M., Casella, P., Gorini, V., Moschella, U., Possenti, A. (eds) Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence, pp. 305. Springer, Dordrecht/Canopus (2009)

    Chapter  Google Scholar 

  43. Beyer, H., Sarbach, O.: Well-posedness of the Baumgarte-Shapiro-Shibata-Nakamura formulation of Einstein’s field equations. Phys. Rev. D 70, 104004 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  44. Gundlach, C., Martín-García, J.M.: Well-posedness of formulations of the Einstein equations with dynamical lapse and shift conditions. Phys. Rev. D 74, 024016 (2006)

    Article  ADS  Google Scholar 

  45. Shibata, M., Baumgarte, T.W., Shapiro, S.L.: Stability and collapse of rapidly rotating, supramassive neutron stars: 3D simulations in general relativity. Phys. Rev. D 61, 044012 (2000)

    Article  ADS  Google Scholar 

  46. Shibata, M.: Axisymmetric general relativistic hydrodynamics: Long-term evolution of neutron stars and stellar collapse to neutron stars and black holes. Phys. Rev. D 67, 024033 (2003)

    Article  ADS  Google Scholar 

  47. Sekiguchi, Y., Shibata, M.: Axisymmetric collapse simulations of rotating massive stellar cores in full general relativity: Numerical study for prompt black hole formation. Phys. Rev. D 71, 084013 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  48. Shibata, M., Sekiguchi, Y.: Three-dimensional simulations of stellar core collapse in full general relativity: Nonaxisymmetric dynamical instabilities. Phys. Rev. D 71, 024014 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  49. Baiotti, L., Hawke, I., Montero, P.J., Löffler, F., Rezzolla, L., Stergioulas, N., Font, J.A., Seidel, E.: Three-dimensional relativistic simulations of rotating neutron-star collapse to a Kerr black hole. Phys. Rev. D 71, 024035 (2005)

    Article  ADS  Google Scholar 

  50. Baiotti, L., Hawke, I., Rezzolla, L., Schnetter, E.: Gravitational-wave emission from rotating gravitational collapse in three dimensions. Phys. Rev. Lett. 94, 131101 (2005)

    Article  ADS  Google Scholar 

  51. Baiotti, L., Rezzolla, L.: Challenging the paradigm of singularity excision in gravitational collapse. Phys. Rev. Lett. 97, 141101 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  52. Sekiguchi Y., Shibata M.: Formation of black hole and accretion disk in a massive high-entropy stellar core collapse, Astrophys. J. (in press); preprint arXiv:1009.5303

    Google Scholar 

  53. Shibata, M.: Fully general relativistic simulation of coalescing binary neutron stars: Preparatory tests. Phys. Rev. D 60, 104052 (1999)

    Article  ADS  Google Scholar 

  54. Shibata, M., Uryu, K.: Simulation of merging binary neutron stars in full general relativity: \(\Gamma=2\) case. Phys. Rev. D 61, 064001 (2000)

    Google Scholar 

  55. Shibata, M., Uryu, K.: Gravitational waves from the merger of binary neutron stars in a fully general relativistic simulation. Prog. Theor. Phys. 107, 265 (2002)

    Article  ADS  MATH  Google Scholar 

  56. Shibata, M., Taniguchi, K., Uryu, K.: Merger of binary neutron stars of unequal mass in full general relativity. Phys. Rev. D 68, 084020 (2003)

    Article  ADS  Google Scholar 

  57. Shibata, M., Taniguchi, K., Uryu, K.: Merger of binary neutron stars with realistic equations of state in full general relativity. Phys. Rev. D 71, 084021 (2005)

    Article  ADS  Google Scholar 

  58. Shibata, M., Taniguchi, K.: Merger of binary neutron stars to a black hole: Disk mass, short gamma-ray bursts, and quasinormal mode ringing. Phys. Rev. D 73, 064027 (2006)

    Article  ADS  Google Scholar 

  59. Baiotti, L., Giacomazzo, B., Rezzolla, L.: Accurate evolutions of inspiralling neutron-star binaries: Prompt and delayed collapse to a black hole. Phys. Rev. D 78, 084033 (2008)

    Article  ADS  Google Scholar 

  60. Hotokezaka, K., Kyutoku, K., Okawa, H., Shibata, M., Kiuchi, K.: Binary neutron star mergers: Dependence on the nuclear equation of state. Phys. Rev. D 83, 124008 (2011)

    Article  ADS  Google Scholar 

  61. Sekiguchi Y., Kiuchi K., Kyutoku K., Shibata M.: Gravitational waves and neutrino emission from the merger of binary neutron stars, Phys. Rev. Lett. 107, 051102 (2011)

    Google Scholar 

  62. Baker, J.G., Centrella, J., Choi, D.-I., Koppitz, M., van Meter, J.: Gravitational-wave extraction from an inspiraling configuration of merging black holes. Phys. Rev. Lett. 96, 111102 (2006)

    Article  ADS  Google Scholar 

  63. Baker, J.G., Centrella, J., Choi, D.-I., Koppitz, M., van Meter, J.: Binary black hole merger dynamics and waveforms. Phys. Rev. D 73, 104002 (2006)

    Article  ADS  Google Scholar 

  64. van Meter, J.R., Baker, J.G., Koppitz, M., Choi, D.I.: How to move a black hole without excision: gauge conditions for the numerical evolution of a moving puncture. Phys. Rev. D 73, 124011 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  65. Campanelli, M., Lousto, C.O., Marronetti, P., Zlochower, Y.: Accurate evolutions of orbiting black-hole binaries without excision. Phys. Rev. Lett. 96, 111101 (2006)

    Article  ADS  Google Scholar 

  66. Campanelli, M., Lousto, C.O., Zlochower, Y.: Last orbit of binary black holes. Phys. Rev. D 73, 061501(R) (2006)

    MathSciNet  ADS  Google Scholar 

  67. Campanelli, M., Lousto, C.O., Zlochower, Y.: Spinning-black-hole binaries: The orbital hang-up. Phys. Rev. D 74, 041501(R) (2006)

    MathSciNet  ADS  Google Scholar 

  68. Campanelli, M., Lousto, C.O., Zlochower, Y.: Spin-orbit interactions in black-hole binaries. Phys. Rev. D 74, 084023 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  69. Sperhake, U.: Binary black-hole evolutions of excision and puncture data. Phys. Rev. D 76, 104015 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  70. Diener, P., Herrmann, F., Pollney, D., Schnetter, E., Seidel, E., Takahashi, R., Thornburg, J., Ventrella, J.: Accurate evolution of orbiting binary black holes. Phys. Rev. Lett. 96, 121101 (2006)

    Article  ADS  Google Scholar 

  71. Brügmann, B., González, J.A., Hannam, M., Husa, S., Sperhake, U., Tichy, W.: Calibration of moving puncture simulations. Phys. Rev. D 77, 024027 (2008)

    Article  ADS  Google Scholar 

  72. Marronetti, P., Tichy, W., Brügmann, B., González, J., Hannam, M., Husa, S., Sperhake, U.: Binary black holes on a budget: simulations using workstations. Class. Quantum Grav. 24, S43 (2007)

    Article  ADS  MATH  Google Scholar 

  73. Herrmann, F., Hinder, I., Shoemaker, D., Laguna, P.: Unequal mass binary black hole plunges and gravitational recoil. Class. Quantum Grav. 24, S33 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  74. Herrmann, F., Hinder, I., Shoemaker, D., Laguna, P., Matzner, R.A.: Gravitational recoil from spinning binary black hole mergers. Astrophys. J. 661, 430 (2007)

    Article  ADS  Google Scholar 

  75. Kyutoku, K., Shibata, M., Taniguchi, K.: Gravitational waves from nonspinning black hole-neutron star binaries: Dependence on equations of state. Phys. Rev. D 82, 044049 (2010)

    Article  ADS  Google Scholar 

  76. A. Buonanno : Binary black hole coalescence, in astrophysics of compact objects. AIP Conf. Proc. 968, 307 (2008)

    Google Scholar 

  77. Centrella, J.M., Baker, J.G., Kelly, B.J., van Meter, J.R.: Black-hole binaries, gravitational waves, and numerical relativity. Rev. Mod. Phys. 82, 3069 (2010)

    Article  ADS  Google Scholar 

  78. Duez, M.D.: Numerical relativity confronts compact neutron star binaries: a review and status report. Class. Quantum Grav. 27, 114002 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  79. Duez, M.D., Liu, Y.T., Shapiro, S.L., Stephens, B.C.: Relativistic magnetohydrodynamics in dynamical spacetimes: Numerical methods and tests. Phys. Rev. D 72, 024028 (2005)

    Article  ADS  Google Scholar 

  80. Shibata, M., Sekiguchi, Y.: Magnetohydrodynamics in full general relativity: Formulation and tests. Phys. Rev. D 72, 044014 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  81. Shibata, M., Liu, Y.T., Shapiro, S.L., Stephens, B.C.: Magnetorotational collapse of massive stellar cores to neutron stars: Simulations in full general relativity. Phys. Rev. D 74, 104026 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  82. Giacomazzo, B., Rezzolla, L.: WhiskyMHD: a new numerical code for general relativistic magnetohydrodynamics. Class. Quantum Grav. 24, S235 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  83. Kiuchi, K., Shibata, M., Yoshida, S.: Evolution of neutron stars with toroidal magnetic fields: Axisymmetric simulation in full general relativity. Phys. Rev. D 78, 024029 (2008)

    Article  ADS  Google Scholar 

  84. Kiuchi, K., Yoshida, S., Shibata, M.: Non-axisymmetric instabilities of neutron star with toroidal magnetic fields, Astron. Astrophys. 532, A30 (2011)

    Google Scholar 

  85. Chruściel, P.T., Friedrich, H. (eds): The Einstein equations and the large scale behavior of gravitational fields—50 years of the Cauchy problem in general relativity. Birkhäuser Verlag, Basel (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gourgoulhon, É. (2012). Evolution Schemes. In: 3+1 Formalism in General Relativity. Lecture Notes in Physics, vol 846. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24525-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24525-1_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24524-4

  • Online ISBN: 978-3-642-24525-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics