Skip to main content

Cooperative Operating Control for Induction or Elimination of Self-sustained Oscillations in CSTB

  • Conference paper
Cooperative Design, Visualization, and Engineering (CDVE 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6874))

Abstract

The problem of cooperative control is especially important in the case of selection of an appropriate mode of operation for a wide class of bioprocesses. In classical approach, this can be achieved via SCADA systems used by process operators. However, due to the nonlinear nature of bioprocesses, the operators usually are not able to assess the efficiency of a bioprocess, especially in the presence of self-sustained oscillations (SSO) of the biomass concentration. Hence, they must cooperate with experts who are usually geographically dispersed. This paper presents the solution of the above-stated problems using an additional server application in the layer of supervisory control. The main tasks of the application are to provide the process data (collected by the SCADA system) to a group of experts and allow them to discuss possibilities of enhancing the efficiency of the bioprocess. The taken decisions are then sent to the operator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey, D., Wright, E.: Practical SCADA for industry. Elsevier, Oxford (2003)

    Google Scholar 

  2. Qiu, B., Gooi, H.B., Liu, Y., Chan, E.K.: Internet-based SCADA Display System. IEEE Comput. Appl. Pow. 15, 14–19 (2002)

    Article  Google Scholar 

  3. Xiu, Z.L., Song, B.H., Sun, L.H., Zeng, A.P.: Theoretical analysis of effects of metabolic overflow and time delay on the performance and dynamic behavior of a two-stage fermentation process. Biochem. Eng. J. 11, 101–109 (2002)

    Article  Google Scholar 

  4. Smith, H.L., Waltman, P.: The Theory of the Chemostat. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  5. Dunn, I.J., Heinzle, E., Ingham, J., Prenosil, J.E.: Biological Reaction Engineering. In: Dynamic Modelling Fundamentals with Simulation Examples. Wiley-VCH Verlag (2003)

    Google Scholar 

  6. Follstad, B.D., Balcarcel, R.R., Stephanopoulos, G., Wang, D.I.C.: Metabolic flux analysis of hybridoma continuous culture steady state multiplicity. Biotechnol. Bioeng. 63, 675–683 (1999)

    Article  Google Scholar 

  7. Chen, C.I., McDonald, K.A., Bisson, L.: Oscillatory behavior of Saccharomyces cerevisiae in continuous culture: I. Effects of pH and nitrogen levels. Biotechnol. Bioeng. 36, 19–27 (1990)

    Google Scholar 

  8. Balakrishnan, A., Yang, R.Y.K.: Self-forcing of a chemostat with self-sustained oscillations for productivity enhancement. Chem. Eng. Commun. 189, 1569–1585 (2002)

    Article  Google Scholar 

  9. Nelson, M.I., Sidhu, H.S.: Analysis of a chemostat model with variable yield coefficient. J. Math. Chem. 38, 605–615 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Silveston, P.L., Budman, H., Jervis, E.: Forced modulation of biological processes: A review. Chem. Eng. Sci. 63, 5089–5105 (2008)

    Article  Google Scholar 

  11. Khanal, S.K., Chen, W.H., Li, L., Sung, S.: Biohydrogen production in continuous flow reactor using mixed microbial culture. Water Environ. Res. 78, 110–117 (2006)

    Article  Google Scholar 

  12. Korba, L., Song, R., Yee, G., Patrick, A.: Automated Social Network Analysis for Collaborative Work1. In: Luo, Y. (ed.) CDVE 2006. LNCS, vol. 4101, pp. 1–8. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Hanmin, L., Seong-Whan, P., Jai-Kyung, L., Je-Sung, B., Jaeho, L.: A Study on BDI Agent for the Integration of Engineering Processes. In: Luo, Y. (ed.) CDVE 2006. LNCS, vol. 4101, pp. 149–155. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Rasmussen, G.A., Brunson, M.W.: Strategies to manage conflicts among multiple users. Weed Technol. 10, 447–450 (1996)

    Google Scholar 

  15. Luo, Y., Dias, J.M.: Development of a Cooperative Integration System for AEC Design. In: Luo, Y. (ed.) CDVE 2004. LNCS, vol. 3190, pp. 1–11. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Choinski, D., Metzger, M., Nocon, W., Polakow, G.: Cooperative Validation in Distributed Control Systems Design. In: Luo, Y. (ed.) CDVE 2007. LNCS, vol. 4674, pp. 280–289. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Metzger, M., Polaków, G.: Cooperative internet-based experimentation on semi-industrial pilot plants. In: Luo, Y. (ed.) CDVE 2008. LNCS, vol. 5220, pp. 265–272. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Harmon, J.L., Svoronos, S.A., Gerasimos, L.: Adaptive steady-state optimization of biomass productivity in continuous fermentors. Biotechnol. Bioeng. 30, 335–344 (1987)

    Article  Google Scholar 

  19. Chen, C.C., Hwang, C., Yang, R.Y.K.: Performance enhancement and optimization of chemostat cascades. Chem. Eng. Sci. 50, 485–494 (1995)

    Article  Google Scholar 

  20. Satroutdinov, A.D., Kuriyama, H., Kobayashi, H.: Oscillatory metabolism of Saccharomy-ces cerevisiae in continuous culture. FEMS Microbiol. Lett. 98, 261–268 (1992)

    Article  Google Scholar 

  21. Parulekar, S.J., Semones, G.B., Rolf, M.J., Lievense, J.C., Lim, H.C.: Induction and elimination of oscillations in continuous cultures of Saccharomyces Cerevisiae. Biotechnol. Bioeng. 28, 700–710 (1986)

    Article  Google Scholar 

  22. Harrison, D.E.F., Topiwala, H.H.: Transient and oscillatory states of continuous culture. Adv. Biochem. Eng. 3, 167–219 (1974)

    Google Scholar 

  23. Metzger, M., Skupin, P.: Model-based operating control of the CSTB in order to improve its productivity. In: Proceedings of the 14th IEEE MMAR Conference (CD-Edition), Miedzyzdroje (2009)

    Google Scholar 

  24. Wooldridge, M., Jennings, N.R.: Intelligent agents: theory and practice. Knowl. Eng. Rev. 10, 115–152 (1995)

    Article  Google Scholar 

  25. Jennings, N.R., Sycara, K., Wooldridge, M.: A Roadmap of Agent Research and Development. Auton. Agent. and Multi–Ag. 1, 7–38 (1998)

    Article  Google Scholar 

  26. Van Dyke Parunak, H.: A practitioners’ review of industrial agent applications. Auton. Agent. and Multi-Ag. 3, 389–407 (2000)

    Article  Google Scholar 

  27. Weiss, G. (ed.): Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. MIT Press, Cambridge (1999)

    Google Scholar 

  28. Metzger, M.: Fast-mode real-time simulator for the wastewater treatment process. Water Science and Technology 30, 191–197 (1994)

    Google Scholar 

  29. Czeczot, J., Metzger, M., Babary, J.P., Nihtila, M.R.: Filtering in adaptive control of distributed parameter bioreactors in the presence of noisy measurements. Simul. Pract. Theory 8, 39–56 (2000)

    Article  Google Scholar 

  30. Nocon, W., Metzger, M.: Predictive Control of Decantation in Batch Sedimentation Process. AICHE J. 56, 3279–3283 (2010)

    Article  Google Scholar 

  31. Metzger, M.: A comparative evaluation of DRE integration algorithms for real-time simula-tion of biologically activated sludge process. Sim. Pract. Theory 7, 629–643 (2000)

    Article  Google Scholar 

  32. Metzger, M.: Comparison of the RK4M4 RK4LIN and RK4M1 methods for systems with time-delays. Simul. 52, 189–193 (1989)

    Article  MATH  Google Scholar 

  33. Zheng, L., Nakagawa, H.: OPC (OLE for process control) specification and its developments. In: Proceedings of the 41st SICE Conference, vol. 2, pp. 917–920 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Skupin, P., Metzger, M. (2011). Cooperative Operating Control for Induction or Elimination of Self-sustained Oscillations in CSTB. In: Luo, Y. (eds) Cooperative Design, Visualization, and Engineering. CDVE 2011. Lecture Notes in Computer Science, vol 6874. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23734-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23734-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23733-1

  • Online ISBN: 978-3-642-23734-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics