Skip to main content

Automatic Occlusion Removal from Facades for 3D Urban Reconstruction

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2011)

Abstract

Object removal and inpainting approaches typically require a user to manually create a mask around occluding objects. While creating masks for a small number of images is possible, it rapidly becomes untenable for longer image sequences. Instead, we accomplish this step automatically using an object detection framework to explicitly recognize and remove several classes of occlusions. We propose using this technique to improve 3D urban reconstruction from street level imagery, in which building facades are frequently occluded by vegetation or vehicles. By assuming facades in the background are planar, 3D scene estimation provides important context to the inpainting process by restricting input sample patches to regions that are coplanar to the occlusion, leading to more realistic final textures. Moreover, because non-static and reflective occlusion classes tend to be difficult to reconstruct, explicitly recognizing and removing them improves the resulting 3D scene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: A randomized correspondence algorithm for structural image editing. ACM Transactions on Graphics (Proc. SIGGRAPH) 28(3) (August 2009)

    Google Scholar 

  2. Benitez, S., Denis, E., Baillard, C.: Automatic production of occlusion-free rectified facade textures using vehicle-based imagery. In: Photogrammetric Computer Vision and Image Analysis, p. A:275 (2010)

    Google Scholar 

  3. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(9), 1124–1137 (2004)

    Article  MATH  Google Scholar 

  4. Criminisi, A., Perez, P., Toyama, K.: Region filling and object removal by exemplar-based image inpainting. IEEE Transactions on Image Processing 13, 1200–1212 (2004)

    Article  Google Scholar 

  5. Dick, A.R., Torr, P.H.S., Cipolla, R.: Modelling and interpretation of architecture from several images. Int. J. Comput. Vision 60, 111–134 (2004)

    Article  Google Scholar 

  6. Felzenszwalb, P., Girshick, R., McAllester, D.: Cascade object detection with deformable part models. In: Computer Vision and Pattern Recognition (2010)

    Google Scholar 

  7. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004) ISBN: 0521540518

    Book  MATH  Google Scholar 

  8. Hedau, V., Hoiem, D., Forsyth, D.: Recovering the spatial layout of cluttered rooms. In: International Conference on Computer Vision (2009)

    Google Scholar 

  9. Hoiem, D., Efros, A.A., Hebert, M.: Putting objects in perspective. International Journal of Computer Vision 80(1), 3–15 (2008)

    Article  Google Scholar 

  10. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing, SGP 2006, pp. 61–70. Eurographics Association, Aire-la-Ville (2006)

    Google Scholar 

  11. Konushin, V., Vezhnevets, V.: Abstract automatic building texture completion. Graphicon (2007)

    Google Scholar 

  12. Leibe, B., Leonardis, A., Schiele, B.: Robust object detection with interleaved categorization and segmentation. International Journal of Computer Vision 77(1-3), 259–289 (2008)

    Article  Google Scholar 

  13. Rasmussen, C., Korah, T., Ulrich, W.: Randomized view planning and occlusion removal for mosaicing building facades. In: IEEE International Conference on Intelligent Robots and Systems (2005), http://nameless.cis.udel.edu/pubs/2005/RKU05

  14. Rother, C., Kolmogorov, V., Blake, A.: ”grabcut”: interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. 23, 309–314 (2004)

    Article  Google Scholar 

  15. Saxena, A., Chung, S.H., Ng, A.Y.: 3-d depth reconstruction from a single still image. International Journal of Computer Vision, IJCV 76 (2007)

    Google Scholar 

  16. Thomas, A., Ferrari, V., Leibe, B., Tuytelaars, T., Van Gool, L.: Shape-from-recognition: Recognition enables meta-data transfer. Computer Vision and Image Understanding 113(12), 1222–1234 (2009)

    Article  Google Scholar 

  17. Thomas, A., Ferrari, V., Leibe, B., Tuytelaars, T., Schiele, B., Van Gool, L.: Towards multi-view object class detection. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2006, vol. 2, pp. 1589–1596. IEEE Computer Society, Washington, DC, USA (2006)

    Google Scholar 

  18. Vergauwen, M., Van Gool, L.: Web-based 3d reconstruction service. Mach. Vision Appl. 17(6), 411–426 (2006)

    Article  Google Scholar 

  19. Wang, L., Jin, H., Yang, R., Gong, M.: Stereoscopic inpainting: Joint color and depth completion from stereo images. In: Conference on Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  20. Werner, T., Zisserman, A.: Model selection for automated reconstruction from multiple views. In: British Machine Vision Conference, pp. 53–62 (2002)

    Google Scholar 

  21. Werner, T., Zisserman, A.: New techniques for automated architectural reconstruction from photographs. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 541–555. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  22. Xiao, J., Fang, T., Zhao, P., Lhuillier, M., Quan, L.: Image-based street-side city modeling. ACM Trans. Graph. 28, 114:1–114:12 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Engels, C., Tingdahl, D., Vercruysse, M., Tuytelaars, T., Sahli, H., Van Gool, L. (2011). Automatic Occlusion Removal from Facades for 3D Urban Reconstruction. In: Blanc-Talon, J., Kleihorst, R., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2011. Lecture Notes in Computer Science, vol 6915. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23687-7_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23687-7_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23686-0

  • Online ISBN: 978-3-642-23687-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics