Skip to main content

Natural Oil-Based Lubricants

  • Chapter
  • First Online:
Green Tribology

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Lubricants and lubrication have been inherent in a machine ever since man invented machines. It was water and natural esters like vegetable oils and animal fats that were used during the early era of machines. During the late 1800s, the development of the petrochemical industry put aside the application of natural lubricants for reasons including its stability and economics. The growing awareness of the lower biodegradability and higher toxicity of petrochemical-based lubricants created the requirements of the best possible protection of nature. The recent research on the adverse effects of mineral oil-based lubricants on the environment has reconfirmed its role in polluting groundwater for up to 100 years and its effects on reducing the growth of trees and the life span of aquatic life [1]. This awareness, of the use of ecofriendly processes and materials, increases interest in Tribology for the use of natural esters in lubrication processes [2]. The development of the retro parade attitude in the lubricant industry and its customers with more environmental awareness, keen to prefer products which do not diminish the world’s finite resource of mineral hydrocarbons and which have a minimal adverse effect on the environment, created an opportunity to use naturally available ecofriendly lubricants [3]. The potential candidates for ecofriendly lubricants include vegetable oils, animal fats and synthetic esters. Although animal fats are also considered biodegradable the most common mineral oil substitutes consist of vegetable oils and synthetic esters [4]. The economical concerns and price stability edge the potential use of vegetable oils as lubricants over synthetic esters. With the notion that we live on a planet with finite resources, we have to think about the coming generations and work for sustainable development in the field of Tribology. This chapter has key concepts like the advantageous and inherent limitations of vegetable oils over mineral oils, possible application of vegetable oil in the field of Tribology, composition and structure of vegetable oils and use of different vegetable oils as bioderived lubricants with their properties and functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. W.J. Bartz, Lubricants and the environment. Tribol. Int. 31(1–3), 35–47 (1998)

    Article  Google Scholar 

  2. P.V. Joseph, S. Deepak, D.K. Sharma, Study of some non-edible vegetable oils of Indian origin for lubricant application. J. Synth. Lubr. 24, 181–197 (2007)

    Article  Google Scholar 

  3. B. Wilson, Lubricants and functional fluids from renewable sources. Ind. Lubr. Technol. 50(1), 6–15 (1998). (January/February)

    Article  Google Scholar 

  4. R.L. Goyan, R.E. Melley, P.A. Wissner, W.C. Ong, Biodegradable lubricants. Lubr. Eng. 54(7), 10–17 (1998)

    Google Scholar 

  5. L. Lazzeri, M. Mazzoncini, A. Rossi, E. Balducci, G. Bartolini, L. Giovannelli, R. Pedriali, R. Petroselli, G. Patalano, G. Agnoletti, A. Borgioli, B. Croce, L. D’Avino, Biolubricants for the textile and tannery industries as an alternative to conventional mineral oils: an application experience in the Tuscany province. Ind. Crops Prod. 24, 280–291 (2006)

    Article  Google Scholar 

  6. C.W. Lea, European development of lubricants from renewable sources. Ind. Lubr. Tribol. 54(6), 268–274 (2002)

    Article  Google Scholar 

  7. A. Pettersson, High-performance base fluids for environmentally adapted lubricants. Tribol. Int. 40, 638–645 (2007)

    Article  Google Scholar 

  8. S.Z. Erhan, B.K. Sharma, Z. Liu, A. Adhvaryu, Lubricant base stock potential of chemically modified vegetable oils. J. Agric. Food Chem. 56(19), 8919–8925 (2008)

    Article  Google Scholar 

  9. S. Asadauskas, J.H. Perez, J.L. Duda, Lubrication properties of castor oil–potential base stock for biodegradable. Lubr. Eng. 53(12), 35–40 (1997)

    Google Scholar 

  10. H.H. Masjuki, M.A. Maleque, A. Kubo, T. Nonaka, Palm oil and mineral oil based lubricants—their tribological and emission performance. Tribol. Int. 32, 305–314 (1999)

    Article  Google Scholar 

  11. M.A. Maleque, H.H. Masjuki, S.M. Sapuan, Vegetable based biodegradable lubricating oil additives. Ind. lubr. technol. 55(3), 137–143 (2003)

    Article  Google Scholar 

  12. S.Z. Erhan, S. Asadauskas, Lubricant basestocks from vegetable oils. Ind. Crops Prod. 11, 277–282 (2000)

    Article  Google Scholar 

  13. V.K. Bhatia, A. Chaudhry, G.A. Sivasankaran, R.P.S. Bisht, M. Kashyap, Modification of jojoba oil for lubricant formulations. JAOCS 67(1), 1–7 (1990)

    Article  Google Scholar 

  14. O.N. Anand, V.K. Chhibber, Vegetable oil derivatives: environment-friendly lubricants and fuels. J. Synth. Lubr. 23, 91–107 (2006)

    Article  Google Scholar 

  15. Y.M. Shashidhara, S.R. Jayaram, Vegetable oils as a potential cutting fluid—an evolution. Tribol. Int. 43, 1073–1081 (2010)

    Article  Google Scholar 

  16. I.I. Ştefanescu, C. Calomir, G. Chirita, On the future of biodegradable vegetable lubricants used for industrial trybosystems. The annals of university “dunărea de jos” of galaţi fascicle VIII (2002)

    Google Scholar 

  17. B. Krzan, J. Vizintin, Tribological properties of an environmentally adopted universal tractor transmission oil based on vegetable oil. Tribol. Int. 36, 827–833 (2003)

    Article  Google Scholar 

  18. J.K. Mannekote, S.V. Kailas, Influence of chemical structure on the boundary lubrication properties of vegetable oils. ASME 2010 10th biennial conference on engineering systems design and analysis (ESDA2010), (Istanbul, Turkey, ESDA2010-25070), pp. 633–637, 12–14 July 2010

    Google Scholar 

  19. N.H. Jayadas, K. Prabhakaran Nair, Coconut oil as base oil for industrial lubricants—evaluation and modification of thermal, oxidative and low temperature properties. Tribol. Int. 39, 873–878 (2006)

    Article  Google Scholar 

  20. J.K. Mannekote, S.V. Kailas, Performance evaluation of vegetable oils as lubricant in a four stroke engine. World Tribology Conference 2009, Kyoto, Japan, D-215, p. 331, 12–15 Sept 2009

    Google Scholar 

  21. J.K. Mannekote, S.V. Kailas, Experimental investigation of coconut and palm oils as lubricants in four stroke engines. Tribol. Online 6(1), 76–82 (2011)

    Article  Google Scholar 

  22. J.K. Mannekote, S.V. Kailas, R.T. Naik, Condition monitoring of vegetable oils used in a 4 stroke engine as lubricants. Tribo-India Conference on Tribology of Automotive Systems, 11, 12 Dec 2009

    Google Scholar 

  23. Jan Cloin, Coconut oil as a biofuel in Pacific Islands. Refocus July/August 2005

    Google Scholar 

  24. P.J. Singh, J. Khurma, A. Singh, Preparation, characterisation, engine performance and emission characteristics of coconut oil based hybrid fuels. Renew. Energy 35, 2065–2070 (2010)

    Article  Google Scholar 

  25. W.K. Trotter, W.D. Givan, Economics of sunflower oil use m the United States production and use in the United States. JAOCS 48, 442–449 (1971)

    Article  Google Scholar 

  26. Z. Flagella, T. Rotunno, E. Tarantino, R. Di Caterina, A. De Caro, Changes in seed yield and oil fatty acid composition of high oleic sunflower (Helianthus annuus L.) hybrids in relation to the sowing date and the water regime. Eur. J. Agron. 17, 221–230 (2002)

    Article  Google Scholar 

  27. G.A. Pereyra-Irujo, N.G. Izquierdo, M. Covi, S.M. Nolasco, F. Quiroz, L.A.N. Aguirrezábal, Variability in sunflower oil quality for biodiesel production: a simulation study. Biomass Bioenergy 33, 459–468 (2009)

    Article  Google Scholar 

  28. S.A. Smith, R.E. King, D.B. Min, Oxidative and thermal stabilities of genetically modified high oleic sunflower oil. Food Chem. 102, 1208–1213 (2007)

    Article  Google Scholar 

  29. S. Marmesat, M. Mancha, M.V. Ruiz-Méndez, M.C. Dobarganes, Performance of sunflower oil with high levels of oleic and palmitic acids during industrial frying of almonds, peanuts, and sunflower seeds. JAOCS 82(7), 505–510 (2005)

    Article  Google Scholar 

  30. I. Stefanescu, C. Calomir, C. Gheorghies, C. Spanu, Study on tribological properties of vegetable sunflower oil used as possible ecological lubricant, The Annals Of University “Dunărea De Jos” Of Galaţi Fascicle Viii, 2005, Issn 1221-4590, Tribology

    Google Scholar 

  31. G.A. Pereyra-Irujo, L.A.N. Aguirrezabal, Sunflower yield and oil quality interactions and variability: Analysis through a simple simulation model. Agric. For. Meteorol. 143, 252–265 (2007)

    Article  Google Scholar 

  32. J. Fredric, R.J. Baur, J.B. Brown, The fatty acids of corn oil, vol. 67, pp. 1899–1900 (1945)

    Google Scholar 

  33. L. Pop, C. Puscas, G. Bandur, G. Vlase, R. Nut iu, Basestock oils for lubricants from mixtures of corn oil and synthetic diesters. JAOCS 85, 71–76 (2008)

    Article  Google Scholar 

  34. F. Marini, F. Balestrieri, R. Bucci, A.L. Magr, D. Marini, Supervised pattern recognition to discriminate the geographical origin of rice bran oils: a first study. Microchem. J. 74, 239–248 (2003)

    Article  Google Scholar 

  35. A. Saydu, M.Z. Duz, C. Kaya, A.B. Kafadar, C. Hamamci, Transesterified sesame (Sesamum indicum L.) seed oil as a biodiesel fuel. Bioresou. Technol. 99, 6656–6660 (2008)

    Article  Google Scholar 

  36. N.A. Santos, M.L.A. Tavares, R. Rosenhaim, F.C. Silva, V.J. Fernandes Jr, A.G. Souza, Thermogravimetric and calorimetric evaluation of babassu biodiesel obtained by the methanol route. J. Therm. Anal. Calorim. 87(3), 649–652 (2007)

    Article  Google Scholar 

  37. L. Canoira, J.G. Galea, R. Alcantara, M. Lapuerta, R. Garcıa-Contreras, Fatty acid methyl esters (FAMEs) from castor oil: production process assessment and synergistic effects in its properties. Renew. Energy 35, 208–217 (2010)

    Article  Google Scholar 

  38. J.S. de Oliveira, P.M. Leite, L.B. de Souza, V.M. Mello, E.C. Silva, J.C. Rubim, S.M.P. Meneghetti, P.A.Z. Suarez, Characteristics and composition of jatropha gossypiifolia and Jatropha curcas L. oils and application for biodiesel production. Biomass Bioenergy 33, 449–453 (2009)

    Article  Google Scholar 

  39. E.T. Akintayo, Characteristics and composition of Parkia biglobbossa and Jatropha curcas oils and cakes. Bioresour. Technol. 92, 307–310 (2004)

    Article  Google Scholar 

  40. S.N. Shah, B.K. Sharma, B.R. Moser, S.Z. Erhan, Preparation and evaluation of jojoba oil methyl esters as biodiesel and as a blend component in ultra-low sulfur diesel fuel. Bioenerg. Res. 3, 214–223 (2010)

    Article  Google Scholar 

  41. H. Gisser, J. Messina, D. Chasan, Jojoba oil as a sperm oil substitute. Wear 34, 53–63 (1975)

    Article  Google Scholar 

  42. A. Apelblat, J. Wisniak, G. Shapiro, Physical properties of (jojoba oil + n-hexane) compared with other (vegetable oil + n-hexane) mixtures. J. Chem. Thermodyn. 40, 1477–1484 (2008)

    Article  Google Scholar 

  43. R.P.S. Bisht, G.A. Sivasankaran, V.K. Bhatia, Additive properties of jojoba oil for lubricating oil formulations. Wear 161, 193–197 (1993)

    Article  Google Scholar 

  44. G.A. Sivasankaran, R.P.S. Bisht, V.K. Jain, M. Gupta, A. Sethuramiah, V.K. Bhatia, Jojoba-oil-based two-stroke gasoline engine lubricant. Tribol. Int. 21(6), 327–333 (1988)

    Article  Google Scholar 

  45. M. Allawzi, M.K. Abu-Arabi, H.S. Al-zoubi, A. Tamimi, Physicochemical characteristics and thermal stability of Jordanian jojoba oil. JAOCS 75(1), 57–62 (1998)

    Article  Google Scholar 

  46. S.L. Pearson, J.E. Spagnoli, Environment lubricants–an overview of onsite applications and experience. Lubr. Eng. 56(4), 40 (2000)

    Google Scholar 

  47. B. Wilson, Lubricants and functional fluids from renewable sources. Ind. Lubr. Technol. 50(1), 6–15 (1998)

    Article  Google Scholar 

  48. B.K. Sharma, A. Adhvaryu, Z. Liu, S.Z. Erhan, Chemical modification of vegetable oils for lubricant applications. JAOCS 83(2), 129–136 (2006)

    Article  Google Scholar 

  49. S. Onkawa, A. Konishi, H. Hatano, K. Ishihama, K. Tanaka, M. Awamura, Oxidation and corrosion characteristics of vegetable base biodegradable hydraulic oils. SAE Tech. Pap. 951038, 55–63 (1995)

    Google Scholar 

  50. B.N. Rhodes, W. Mammel, P. Landis, F.L. Erickson, Water rejection of vegetable oil base stocks for tractor/hydraulic fluids. SAE Tech. Pap. 952073, 1–4 (1995)

    Google Scholar 

  51. S. Asadauskas, S.Z. Erhan, Depression of pour points of vegetable oils by blending with diluents used for biodegradable lubricants. JAOCS 76(3), 313–316 (1999)

    Article  Google Scholar 

  52. H.-S. Hwang, S.Z. Erhan, Modification of epoxidized soybean oil for lubricant formulations with improved oxidative stability and low pour point. JAOCS 78(12), 1179–1184 (2001)

    Article  Google Scholar 

  53. S.Z. Erhan, B.K. Sharma, Z. Liu, A. Adhvaryu, Lubricant base stock potential of chemically modified vegetable oils. J. Agric. Food Chem. 56, 8919–8925 (2008)

    Article  Google Scholar 

  54. B.K. Sharma, A. Adhvaryu, S.Z. Erhan, Friction and wear behavior of thioether hydroxy vegetable oil. Tribol. Int. 42, 353–358 (2009)

    Article  Google Scholar 

  55. J. Sepulveda, S. Teixeira, U. Schuchardt, Alumina-catalyzed epoxidation of unsaturated fatty esters with hydrogen peroxide. Appl. Catal. A 318, 213–217 (2007)

    Article  Google Scholar 

  56. J.L. Scala, R.P. Wool, Effect of FA composition on epoxidation kinetics of TAG. JAOCS 79(4), 373–378 (2002)

    Article  Google Scholar 

  57. L.H. Gan, K.S. Ooi, L.M. Gan, S.H. Goh, Effects of epoxidation on the thermal oxidative stabilities of fatty acid esters derived from palm olein. JAOCS 72(4), 439–442 (1995)

    Article  Google Scholar 

  58. R. Mungroo, N.C. Pradhan, V.V. Goud, A.K. Dalai, Epoxidation of canola oil with hydrogen peroxide catalyzed by acidic ion exchange resin. JAOCS 85, 887–896 (2008)

    Article  Google Scholar 

  59. S. Dinda, A.V. Patwardhan, V.V. Goud, N.C. Pradhan, Epoxidation of cottonseed oil by aqueous hydrogen peroxide catalysed by liquid inorganic acids. Bioresour. Technol. 99, 3737–3744 (2008)

    Article  Google Scholar 

  60. V.V. Goud, N.C. Pradhan, A.V. Patwardhan, Epoxidation of karanja (pongamia glabra) oil by H2O2. JAOCS 83(7), 635–640 (2006)

    Article  Google Scholar 

  61. F.E. Okieimen, O.I. Bakare, C.O. Okieimen, Studies on the epoxidation of rubber seed oil. Ind. Crops Prod. 15, 139–144 (2002)

    Article  Google Scholar 

  62. A. Adhvaryu, S.Z. Erhan, Epoxidized soybean oil as a potential source of high-temperature lubricants. Ind. Crop Prod. 15, 247–254 (2002)

    Article  Google Scholar 

  63. S.Z. Erhan, B.K. Sharma, Z. Liu, A. Adhvaryu, Lubricant base stock potential of chemically modified vegetable oils. J. Agric. Food Chem. 56, 8919–8925 (2008)

    Article  Google Scholar 

  64. B.K. Sharma, A. Adhvaryu, S.Z. Erhan, Friction and wear behavior of thioether hydroxy vegetable oil. Tribol. Int. 42, 353–358 (2009)

    Article  Google Scholar 

  65. E.H. Pryde, JAOCS 61(2), 419–425 (1984)

    Article  Google Scholar 

  66. J.P. Friedrich, G.R. List, V.E. Sohns, Hydroformylation of methyl oleate with a recycled rhodium catalyst and estimated costs for a batch process. J. Am. Oil Chem. Soc. 50, 455–458 (1973)

    Article  Google Scholar 

  67. E.N. Frankel, Methyl 9(lO)-formylstearate by selective hydroformylation of oleic oils. JAOCS 48, 248–253 (1971)

    Article  Google Scholar 

  68. M.W. Balakos, E.E. Hernanolez, Catalyst characteristics and performance in edible oil hydrogenation. Catal. Today 35, 415–425 (1997)

    Article  Google Scholar 

  69. A. Behr, H. Schmidke, Selektive hydrierung ungesattigter modellverfindungen mit solvesstabilisierten palladium-kolloidkatalysatoren. Chem.-1ng.-Tech. 65, 568–569 (1993)

    Google Scholar 

  70. L.E. Johansson, S.T. Lundin, Copper catalysts in the selective hydrogenation of soybean and rapeseed oils: I. The activity of the copper chromite catalyst. JAOCS 56, 974–980 (1979)

    Article  Google Scholar 

  71. K. Mondal, S.B. Lalvani, A second-order model for catalytic-transfer hydrogenation of edible oils. JAOCS 77(1), 1–8 (2000)

    Article  Google Scholar 

  72. M. Martinelli, R. de Cassia de Souza Schneider, V.Z. Baldissarelli, M.L. von Holleben, E.B. Caramao, Castor oil hydrogenation by a catalytic hydrogen transfer system using limonene as hydrogen donor. JAOCS 82(4), 279–283 (2005)

    Google Scholar 

  73. Y. Kitayamaa, M. Muraokaa, M. Takahashia, T. Kodamaa, E. Takahashib, M. Okamurac, Catalytic hydrogenation of linoleic acid over platinum-group metals supported on alumina. JAOCS 74(5), 525–529 (1997)

    Article  Google Scholar 

  74. N. Ravasio, F. Zaccheria, M. Gargano, S. Recchia, A. Fusi, N. Poli, R. Psaro, Environmental friendly lubricants through selective hydrogenation of rapeseed oil over supported copper catalysts. Appl. Catal. A 233, 1–6 (2002)

    Article  Google Scholar 

  75. A. Behr, A. Westfechtel, J.P. Gomes, Catalytic processes for the technical use of natural fats and oils. Chem. Eng. Technol. 31(5), 700–714 (2008)

    Article  Google Scholar 

  76. S. Warwel, P. Bavaj, M.R. Klass, B. Wolff, H. Eierdanz, Perspektiven nachwachsender Rohstoffe in der Chemie (VCH, Weinheim, 1996), p. 119

    Book  Google Scholar 

  77. R.W. Johnson, E. Fritz, Fatty Acids in Industry (Marel Dekker, New York, 1988), p. 667

    Google Scholar 

  78. H. Wagner, R. Luther, T. Mang, Lubricant base fluids based on renewable raw materials their catalytic manufacture and modification. Appl. Catal. A 221, 429–442 (2001)

    Article  Google Scholar 

  79. L.T. Black, R.E. Beal, Acetoxylation of methyl oleate with a resin catalyst. JAOCS 44, 310–312 (1967)

    Article  Google Scholar 

  80. U. Biermann, J.O. Metzger, Friedel–crafts alkylation of alkenes: ethylaluminum sesquichloride induced alkylations with alkyl chloroformates. Angew Chem. Int. Ed. 38(24), 3675–3677 (1999)

    Article  Google Scholar 

  81. J.O. Metzger, U. Biermann, Alkylaluminium dichloride induced friedel-crafts acylation of unsaturated carboxylic acids and alcohols. Liebigs. Ann. Chem. 645–650 (1993)

    Article  Google Scholar 

  82. S. Asadauskas, H.P. Joseph, J.D. Larry, Lubrication properties of castor oil potential basestock for biodegradable lubricants. Lubr. Eng. 53(12), 35–40 (1997)

    Google Scholar 

  83. L.C. Meher, S.D. Vidya, S.N. Naik, Technical aspects of biodiesel production by transesterification—a review. Renew. Sustain. Energy Rev. 10, 248–268 (2006)

    Article  Google Scholar 

  84. P.S. Wang, The production of isopropyl esters and their effects on a diesel engine. Master of Science thesis to Iowa State University (2003)

    Google Scholar 

  85. R. Alcantara, J. Amores, L. Canoira, E. Fidalgo, M.J. Franco, A. Navarro, Catalytic production of biodiesel from soy-bean oil, used frying oil and tallow. Biomass and Bioenergy 18, 515–527 (2000)

    Article  Google Scholar 

  86. U. Schuchardta, S. Ricardo, M.V. Rogerio, Transesterification of vegetable oils: a review. J. Braz. Chem. Soc. 9(1), 199–210 (1998)

    Google Scholar 

  87. F.R. Abreu, G.L. Daniella, H.H. Elias, W. Carlos, A.Z.S. Paulo, Utilization of metal complexes as catalysts in the transesterification of Brazilian vegetable oils with different alcohols. J. Mol. Catal. A: Chem. 209, 29–33 (2004)

    Article  Google Scholar 

  88. M.W. Formo, Ester reactions of fatty materials. JAOCS 3(11), 548–559 (1954)

    Google Scholar 

  89. C.Y. May, Transesterification of palm oil: effect of reaction parameters. J. Oil Palm Res. 16(2), 1–11 (2004)

    Google Scholar 

  90. J.M. Encinar, J.F. Gonzalez, J.J. Rodrıguez, A. Tejedor, Biodiesel fuels from vegetable oils: transesterification of cynara cardunculus l oils with ethanol. Energy Fuels 162, 443–450 (2002)

    Article  Google Scholar 

  91. E. Crabbe, C. Nolasco-Hipolito, G. Kobayashi, K. Sonomoto, A. Ishizaki, Biodiesel production from crude palm oil and evaluation of butanol extraction and fuel properties. Process Biochem. 37, 65–71 (2001)

    Article  Google Scholar 

  92. O. Rachmaniah, J. Yi-Hsu, R.V. Shaik, T. Ismojowati, A.S. Musfil, A study on acid-catalyzed transesterification of crude rice bran oil for biodiesel production (2001)

    Google Scholar 

  93. M.P. Simoni, R.M. Mario, R. Carlos, E.C. Wolf, G.E.S. Silva, M.A. Lima, J.I.S. Coimbra, H.V.C. Sandra, Ethanolysis of castor and cottonseed oil:a systematic study using classical catalysts. JAOCS 83(9), 819–822 (2006)

    Article  Google Scholar 

  94. H. Noureddin, D. Zhu, Kinetics of transesterification of soyabean oil. Biocatal. Art. 74(11), 1457–1563 (1997)

    Google Scholar 

  95. D. Darnoko, M. Cheryan, Kinetics of palm oil transesterification in a batch reactor. JAOCS 77(12), 1263–1268 (2000)

    Article  Google Scholar 

  96. A.W. Schwab, M.O. Bagby, B. Freedman, Preparation and properties of diesel fuels from vegetable oils. Fuel 66, 1372–1378 (1987)

    Article  Google Scholar 

  97. M.A. Maleque, H.H. Masjuki, S.M. Sapuan, Vegetable-based biodegradable lubricating oil additives. Ind. Lubr. Technol. 55(3), 137–143 (2003)

    Article  Google Scholar 

  98. D.C. Drown, K. Harper, E. Frame, Screening vegetable oil alcohol esters as fuel lubricity enhancers. JAOCS 78(6), 579–585 (2001)

    Article  Google Scholar 

  99. M.G. Kulkarni, A.K. Dalai, N.N. Bakhshi, Transesterification of canola oil in mixed methanol/ethanol system and use of esters as lubricity additive. Bioresour. Technol. 98, 2027–2033 (2007)

    Article  Google Scholar 

  100. ASTM D5355

    Google Scholar 

  101. ASTM D445

    Google Scholar 

  102. ASTM D974

    Google Scholar 

  103. ASTM D3339

    Google Scholar 

  104. ASTM D2270

    Google Scholar 

  105. ASTM D5558

    Google Scholar 

  106. ASTM D5554

    Google Scholar 

  107. ASTM D5555

    Google Scholar 

  108. ASTM D1747

    Google Scholar 

  109. ASTM D4377

    Google Scholar 

  110. ASTM D4928

    Google Scholar 

  111. ASTM D92

    Google Scholar 

  112. ASTM D7094

    Google Scholar 

  113. ASTM D97

    Google Scholar 

  114. ASTM D2500

    Google Scholar 

  115. ASTM D1401

    Google Scholar 

  116. ASTM D3601

    Google Scholar 

  117. ASTM D3519

    Google Scholar 

  118. ASTM D 892

    Google Scholar 

  119. ASTM D2619

    Google Scholar 

  120. ASTM D2070

    Google Scholar 

  121. ASTM D6375

    Google Scholar 

  122. ASTM D2272

    Google Scholar 

  123. A. Adhvaryu, Z. Liu, S.Z. Erhan, Synthesis of novel alkoxylated triacylglycerols and their lubricant base oil properties. Ind. Crops Prod. 21, 113–119 (2005)

    Article  Google Scholar 

  124. ASTM D3233

    Google Scholar 

  125. ASTM D2783

    Google Scholar 

  126. ASTM D4172

    Google Scholar 

  127. ASTM D6081

    Google Scholar 

  128. ASTM D5864

    Google Scholar 

  129. http://www.cottonseed.com/publications/csobro.asp, as on March 26, 2011

  130. B. Sreenivasan, Component fatty acids of some oils and fats and composition. JAOCS 45, 259–265 (1968)

    Article  Google Scholar 

  131. V.S. Yaliwal, S.R. Daboji, N.R. Banapurmath, P.G. Tewari, Production and utilization of renewable liquid fuel in a single cylinder four stroke direct injection compression ignition engine. Int. J. Eng. Sci. Tech. 2(10), 5938–5948 (2010)

    Google Scholar 

  132. G. Fontaras, T. Tzamkiozis, E. Hatziemmanouil, Z. Samaras, Experimental study on the potential application of cottonseed oil—diesel blends as fuels for automotive diesel engines. Trans. I Chem. E 85(B5), 396–403 (2007)

    Google Scholar 

  133. E.J. CAMPBELL, Sunflower oil. JAOCS 60(2), 387–392 (1983)

    Article  Google Scholar 

  134. S. Mia, N. Ohno, Prospect of mustard and coconut oil as environment friendly lubricant for Bangladesh. in Proceedings of International Conference on Environmental Aspects of Bangladesh (ICEAB10), Japan, Sept. 2010, pp. 120–121

    Google Scholar 

  135. F.L. Jackson, H.E. Longenecker, The fatty acids and glycerides of babassu oil. Oil Soap 21, 73–75 (1944)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish V. Kailas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sathwik Chatra, K.R., Jayadas, N.H., Kailas, S.V. (2012). Natural Oil-Based Lubricants. In: Nosonovsky, M., Bhushan, B. (eds) Green Tribology. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23681-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23681-5_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23680-8

  • Online ISBN: 978-3-642-23681-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics