Skip to main content

Graph-Theoretic Formalization of Hybridization in DNA Sticker Complexes

  • Conference paper
DNA Computing and Molecular Programming (DNA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6937))

Included in the following conference series:

Abstract

Sticker complexes are a formal graph-based data model for a restricted class of DNA complexes, motivated by potential applications to databases. This data model allows for a purely declarative definition of hybridization. We introduce the notion of terminating hybridization, and characterize this notion in purely graph-theoretic terms. Terminating hybridization can still produce results of exponential size. We indicate a class of complexes where hybridization is guaranteed to be polynomially bounded.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading (1995)

    MATH  Google Scholar 

  2. Adleman, L.: Molecular computation of solutions to combinatorial problems. Science 226, 1021–1024 (1994)

    Article  Google Scholar 

  3. Amos, M.: Theoretical and Experimental DNA Computation. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  4. Arita, M., Hagiya, M., Suyama, A.: Joining and rotating data with molecules. In: Proceedings 1997 IEEE International Conference on Evolutionary Computation, pp. 243–248 (1997)

    Google Scholar 

  5. Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E.: An autonomous molecular computer for logical control of gene expression. Nature 429, 423–429 (2004)

    Article  Google Scholar 

  6. Boneh, D., Dunworth, C., Lipton, R., Sgall, J.: On the computational power of DNA. Discrete Applied Mathematics 71, 79–94 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cardelli, L.: Abstract machines of systems biology. In: Priami, C., Merelli, E., Gonzalez, P., Omicini, A. (eds.) Transactions on Computational Systems Biology III. LNCS (LNBI), vol. 3737, pp. 145–168. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Cardelli, L.: Strand algebras for DNA computing. In: Deaton and Suyama [12], pp. 12–24

    Google Scholar 

  9. Chen, H.L., Kao, M.Y.: Optimizing tile concentrations to minimize errors and time for DNA tile self-assembly systems. In: Sakakibara and Mi [28], pp. 13–24

    Google Scholar 

  10. Chen, J., Deaton, R., Wang, Y.Z.: A DNA-based memory with in vitro learning and associative recall. Natural Computing 4(2), 83–101 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Condon, A., Corn, R., Marathe, A.: On combinatorial DNA word design. Journal of Computational Biology 8(3), 201–220 (2001)

    Article  MATH  Google Scholar 

  12. Deaton, R., Suyama, A. (eds.): DNA 15. LNCS, vol. 5877. Springer, Heidelberg (2009)

    Google Scholar 

  13. Dimitrov, R., Zuker, M.: Prediction of hybridization and melting for double-stranded nucleic acids. Biophysical Journal 87, 215–226 (2004)

    Article  Google Scholar 

  14. Dirks, R., Pierce, N.: Triggered amplification by hybridization chain reaction. Proceedings of the National Academy of Sciences 101(43), 15275–15278 (2004)

    Article  Google Scholar 

  15. Garcia-Molina, H., Ullman, J., Widom, J.: Database Systems: The Complete Book. Prentice-Hall, Englewood Cliffs (2009)

    Google Scholar 

  16. Gillis, J., Van den Bussche, J.: A formal model of databases in DNA. In: Horimoto, K., Nakatsui, M., Popov, N. (eds.) Algebraic and Numeric Biology 2010. LNCS, Springer, Heidelberg (to appear, 2011) for a preprint, http://alpha.uhasselt.be/~vdbuss/dnaql.pdf

    Google Scholar 

  17. Hartmanis, J.: On the weight of computations. Bulletin of the EATCS 55, 136–138 (1995)

    MATH  Google Scholar 

  18. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (1979)

    MATH  Google Scholar 

  19. Jonoska, N., McColm, G., Staninska, A.: On stoichiometry for the assembly of flexible tile DNA complexes. Natural Computing, January 23 (2010) (published online)

    Google Scholar 

  20. Majumder, U., Reif, J.: Design of a biomolecular device that executes process algebra. In: Deaton and Suyama [12], pp. 97–105

    Google Scholar 

  21. Paun, G., Rozenberg, G., Salomaa, A.: DNA Computing. Springer, Heidelberg (1998)

    Book  MATH  Google Scholar 

  22. Qian, L., Soloveichik, D., Winfree, E.: Efficient Turing-universal computation with DNA polymers. In: Sakakibara and Mi [28], pp. 123–140.

    Google Scholar 

  23. Reif, J.: Parallel biomolecular computation: models and simulations. Algorithmica 25(2-3), 142–175 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Reif, J.H., LaBean, T.H., Pirrung, M., Rana, V.S., Guo, B., Kingsford, C., Wickham, G.S.: Experimental construction of very large scale DNA databases with associative search capability. In: Jonoska, N., Seeman, N.C. (eds.) DNA 2001. LNCS, vol. 2340, pp. 231–247. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  25. Rothemund, P.: A DNA and restriction enzyme implementation of Turing machines. In: Lipton, R., Baum, E. (eds.) DNA Based Computers: DIMACS Workshop, held April 4, pp. 75–120. American Mathematical Society, Providence (1996)

    Google Scholar 

  26. Roweis, S., Winfree, E., Burgoyne, R., Chelyapov, N., Goodman, M., Rothemund, P., Adleman, L.: A sticker-based model for DNA computation. Journal of Computational Biology 5(4), 615–629 (1998)

    Article  MATH  Google Scholar 

  27. Sager, J., Stefanovic, D.: Designing nucleotide sequences for computation: A survey of constraints. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892, pp. 275–289. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  28. Sakakibara, Y., Mi, Y. (eds.): DNA 16 2010. LNCS, vol. 6518. Springer, Heidelberg (2011)

    MATH  Google Scholar 

  29. Sakamoto, K., et al.: State transitions by molecules. Biosystems 52, 81–91 (1999)

    Article  Google Scholar 

  30. Seelig, G., Soloveichik, D., Zhang, D., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 315(5805), 1585–1588 (2006)

    Article  Google Scholar 

  31. Shortreed, M., et al.: A thermodynamic approach to designing structure-free combinatorial DNA word sets. Nucleic Acids Research 33(15), 4965–4977 (2005)

    Article  Google Scholar 

  32. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. In: PNAS 2010, March 4 (2010) (published online)

    Google Scholar 

  33. Soloveichik, D., Winfree, E.: The computational power of Benenson automata. Theor. Comput. Sci. 244(2–3), 279–297 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Winfree, E., Yang, X., Seeman, N.: Universal computation via self-assembly of DNA: Some theory and experiments. In: Landweber, L., Baum, E. (eds.) DNA Based Computers II: DIMACS Workshop, held June 10-12, pp. 191–213. American Mathematical Society, Providence (1998)

    Google Scholar 

  35. Yamamoto, M., Kita, Y., Kashiwamura, S., Kameda, A., Ohuchi, A.: Development of DNA relational database and data manipulation experiments. In: Mao, C., Yokomori, T. (eds.) DNA12. LNCS, vol. 4287, pp. 418–427. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brijder, R., Gillis, J.J.M., Van den Bussche, J. (2011). Graph-Theoretic Formalization of Hybridization in DNA Sticker Complexes. In: Cardelli, L., Shih, W. (eds) DNA Computing and Molecular Programming. DNA 2011. Lecture Notes in Computer Science, vol 6937. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23638-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23638-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23637-2

  • Online ISBN: 978-3-642-23638-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics