Skip to main content

Rhizobacterial ACC Deaminase in Plant Growth and Stress Amelioration

  • Chapter
  • First Online:
Bacteria in Agrobiology: Stress Management
  • 1420 Accesses

Abstract

When plants are continuously exposed to a wide range of environmental stresses, their germination, vigor, growth, and productivity are affected. It has been observed that whenever plants are exposed to stress conditions, stress ethylene is accumulated in the plant tissues, and cause senescence and growth retardation. To overcome these ill effects, intensive breeding programs have focused, over the last several decades, on bringing out resistant crop species with enhanced productivity under suboptimal environmental conditions. However, conventional breeding programs have had concerns over the time taken for the development of resistant varieties and the possible break down of resistance at any time after release. Thus, it is necessary to find long term alternative technology in the agricultural system to ameliorate the ill effects of stress factors. Fortunately, some of the plant growth promoting rhizobacteria that reside near the root region of the plant species possess the mechanism for lowering the accumulation of stress ethylene in stressed plants. The bacterium has an enzyme 1-Aminocyclopropane-1-carboxylate deaminase that intermediates with ethylene synthesis pathway and regulates ethylene accumulation, which, in turn, reduces the damage caused by environmental stresses. Thus, a comprehensive review of the role of rhizobacterial ACC deaminase in plant growth and stress resistance in various agricultural settings is necessary to study its impact on sustainable agriculture and the results of earlier studies will facilitate further research on the aspects of ACC deaminase mediated stress amelioration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeles FB, Morgan PW, Saltveit ME (1992) Ethylene in plant biology. Academic, San Diego

    Google Scholar 

  • Adams DO, Yang SF (1979) Ethylene biosynthesis: Identification of 1-Amino cyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc Natl Acad Sci USA 76:170–174

    Article  PubMed  CAS  Google Scholar 

  • Bartels D (2001) Molecular mechanisms of desiccation tolerance in plants. In: Storey KB (eds) Molecular mechanisms of metabolic arrest: life in limbo. BIOS Scientific, Oxford, pp 187–196

    Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250

    Article  CAS  Google Scholar 

  • Bensalim S, Nowak J, Asiedu SK (1998) A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. Am J Potato Res 75:145–152

    Article  Google Scholar 

  • Bockman E, Ganapathy V, Oblak TG, Leibach FH (1997) Localization of peptide transporter in nuclei and lysosomes of the pancreas. Int J Pancreatol 22:221–225

    PubMed  CAS  Google Scholar 

  • Bradford KJ, Yang SF (1980) Xylem transport of 1-aminocyclopropane-1-carboxylic acid, an ethylene precursor in waterlogged tomato plants. Plant Physiol 65:322–326

    Article  PubMed  CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (1998) A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668

    PubMed  CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  PubMed  CAS  Google Scholar 

  • Burris RH (1998) 100 years of discoveries in biological N2 fixation. In: Bothe H, Bruijin FJ, Newton WE (eds) Nitrogen fixation: hundred years after. Fischer, New York, pp 21–30

    Google Scholar 

  • Burroughs LF (1957) I-Aminocyclopropane-1-carboxylic acid: a new amino-acid in Perry pears and Cider apples. Nature 179:360–361

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Mei R, Lu S, Liu L, Kloepper JW (1996) The use of yield increasing bacteria (YIB) as plant growth-promoting rhizobacteria in Chinese agriculture. In: Utkhede RS, Gupta VK (eds) Management of soil borne diseases. Kalyani, New Delhi, pp 165–184

    Google Scholar 

  • Cheng Z, Park E, Glick BR (2007) 1-Aminocyclopropane-1-carboxylate (ACC) deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53:912–918

    Article  PubMed  CAS  Google Scholar 

  • Dowling DN, O’Gara F (1994) Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends Biotechnol 12:133–141

    Article  CAS  Google Scholar 

  • Dowling DN, Sexton R, Fenton A, Delany I, Fedi S, McHugh B, Callanan M, Moenne-Loccoz Y, O’Gara F (1996) Iron regulation in plant-associated Pseudomonas fluorescens M114: implications for biological control. In: Nakazawa T, Furukawa K, Haas D, Silver S (eds) Molecular biology of Pseudomonads. American Society for Microbiology, Washington, DC, pp 502–511

    Google Scholar 

  • Else MA, Hall KC, Arnold GM, Davies WJ, Jackson MB (1995) Export of abscisic acid, 1-aminocyclopropane-1-carboxylic acid, phosphate, and nitrate from roots to shoots of Xooded tomato plants. Plant Physiol 107:377–384

    PubMed  CAS  Google Scholar 

  • Feng J, Barker AV (1992) Ethylene evolution and ammonium accumulation by nutrient-stressed tomato plants grown with inhibitors of ethylene synthesis or action. J Plant Nutr 15:155–168

    Article  CAS  Google Scholar 

  • Garcia JAL, Probanza A, Ramos B, Flores JJC, Manero FJG (2004) Effects of plant growth promoting rhizobcteria (PGPR) on the biological nitrogen fixation, nodulation and growth of Lupinus albus I. cv. multolupa. Eng Life Sci 4:71–77

    Article  CAS  Google Scholar 

  • Gamalero E, Berta G, Massa1 N, Glick BR, Lingua G (2010) Interactions between Pseudomonas putida UW4 and Gigaspora rosea BEG9 and their consequences for the growth of cucumber under salt-stress conditions. J Appl Microbiol (108):236–245

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR, Jacobson CB, Schwarze MMK, Pasternak JJ (1994) 1-Aminocyclopropane-1-carboxylic acid deaminase mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2 do not stimulate canola root elongation. Can J Microbiol 40:911–915

    Article  CAS  Google Scholar 

  • Glick BR, Karaturovic DM, Newell PC (1995) A novel procedure for rapid isolation of plant growth promoting pseudomonads. Can J Microbial 41:533–536

    Article  CAS  Google Scholar 

  • Glick BR, Liu C, Ghosh S, Dumbroff EB (1997) Early development of canola seedlings in the presence of the plant growth promoting rhizobacterium Pseudomonas putida GR 12–2. Soil Biol Biochem 29:1233–1239

    Article  CAS  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    Article  PubMed  CAS  Google Scholar 

  • Glick BR, Patten CL, Holguin G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London, pp 125–140

    Book  Google Scholar 

  • Glick BR, Cheng Z, Czamy J, Duan J (2007) Promotion of plant growth by ACC deaminase containing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase containing plant growth-promoting bacteria. Plant Physiol Biochem 39:11–17

    Article  CAS  Google Scholar 

  • Grichko VP, Filby B, Glick BR (2000) Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb and Zn. J Biotechnol 81:45–53

    Article  PubMed  CAS  Google Scholar 

  • Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 1:1–13

    Article  Google Scholar 

  • Hall JA, Peirson D, Ghosh S, Glick BR (1996) Root elongation in various agronomic crops by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Isr J Plant Sci 44:37–42

    Google Scholar 

  • Holguin G, Glick BR (2001) Expression of ACC deaminase gene from Enterobacter cloccae UW4 in Azospirillium brasilense. Microb Ecol 41:81–288

    Google Scholar 

  • Honma M (1985) Chemically reactive sulfohydryl groups of 1-aminocyclopropane-1-carboxylate deaminase. Agric Biol Chem 49:567–571

    Article  CAS  Google Scholar 

  • Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane- 1-carboxylic acid. Agric Biol Chem 42:1825–1831

    Article  CAS  Google Scholar 

  • Jackson MB (1997) Hormones from roots as signal for the shoots of stressed plants. Trends Plant Sci 2:22–28

    Article  Google Scholar 

  • Jacobson CB, Pasternak JJ, Glick BR (1994) Partial purification and characterization of ACC deaminase from the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 40:1019–1025

    Article  CAS  Google Scholar 

  • Klee HJ, Hayford MB, Kretzmer KA, Barry GF, Kishore GM (1991) Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell 3:1187–1193

    Article  PubMed  CAS  Google Scholar 

  • Kloepper JW, Beauchamp CJ (1992) A review of issues related to measuring colonization of plant roots by bacteria. Can J Microbiol 38:1219–1232

    Article  Google Scholar 

  • Kloepper JW, Lifshitz R, Schroth MN (1988) Pseudomonas inoculants to benefit plant production. ISI Atlas Sci Anim Plant Sci XX:60–64

    Google Scholar 

  • Li J, Ovakim DH, Charles TC, Glick BR (2000) An ACC Deaminase minus mutant of Enterobacter cloacae UW4 no longer promotes root elongation. Curr Microbiol 41:101–105

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Kloepper JW, Tuzun S (1995) Induction of systemic resistance in cucumber against Fusarium wilt by plant growth promoting rhizobacteria. Phytopathology 85:695–698

    Article  Google Scholar 

  • Loper JE, Nowak-Thompson B, Whistler CA, Hagen MJ, Corbell NA, Henkels MD, Stockwell VO (1997) Biological control mediated by antifungal metabolite production and resource competition: an overview. In: Ogoshi A, Kobayashi K, Homma Y, Kodama F, Kondo N, Akino S (eds) Plant growth-promoting rhizobacteria: present status and future prospects. OECD, Paris, pp 73–79

    Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacterial. Antonie Van Leeuwenhoek 86:1–25

    Article  PubMed  CAS  Google Scholar 

  • Lund ST, Stall RE, Klee HJ (1998) Ethylene regulates the susceptible response to pathogen infection in tomato. Plant Cell 10:371–382

    Article  PubMed  CAS  Google Scholar 

  • Ma JH, Yao JL, Cohen D, Morris B (1998) Ethylene inhibitors enhance in vitro formation from apple shoot cultures. Plant Cell Rep 17:211–214

    Article  CAS  Google Scholar 

  • Ma W, Guinel FC, Glick GR (2003a) Rhizobium leguminosarum biovar viciae 1-Aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Appl Environ Microbiol 69:4396–4402

    Article  PubMed  CAS  Google Scholar 

  • Ma W, Sebestianova SB, Sebestian J, Burd GI, Guinel FC, Glick BR (2003b) Prevalence of 1-aminocyclopropane-1-carboxylate deaminase in Rhizobium spp. Antonie Leeuwenhoek 83:285–291

    Article  PubMed  CAS  Google Scholar 

  • Ma W, Charles TC, Glick BR (2004) Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Sinorhizobium meliloti increases its ability to nodulate alfalfa. Appl Environ Microbiol 70:5891–5897

    Article  PubMed  CAS  Google Scholar 

  • Mattoo AK, Suttle JC (1991) The plant hormone ethylene. CRC, Boca Raton, FL

    Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004a) Plant growth-promoting bacteria that confer resistance to water stress in tomato and pepper. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004b) Plant growth-promoting bacteria that confer resistance in tomato and pepper to salt stress. Plant Physiol Biochem 167:650–656

    Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2007) Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can J Microbiol 53:1141–1149

    Article  PubMed  CAS  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Asghar HN, Arshad M (2010) Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat. Soil Sci Am J 74:533–542

    Article  Google Scholar 

  • Nie L, Shah S, Rashid A, Burd GI, Dixon DG, Glick BR (2002) Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol Biochem 40:355–361

    Article  CAS  Google Scholar 

  • Niu X, Bressan RA, Hasegawa PM, Pardo JM (1995) Ion homeostasis in NaCl stress environments. Plant Physiol 109:735–742

    PubMed  CAS  Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp involved in suppression of plant root pathogens. Microbiol Rev 56:662–676

    PubMed  Google Scholar 

  • Okazaki S, Nukui N, Sugawara M, Minamisawa K (2004) Rhizobial strategies to enhance symbiotic interactions: Rhizobitoxine and 1-Aminocyclopropane-1-Carboxylate deaminase. Microb Environ 19:99–111

    Article  Google Scholar 

  • Olson DC, Oetiker JH, Yang SF (1995) Analysis of LE-ACS3, a 1-Aminocyclopropane-1-carboxylic acid synthase gene expressed during flooding in the roots of tomato plants. J Biol Chem 270:14056–14061

    Article  PubMed  CAS  Google Scholar 

  • Penrose DM (2000) The role of ACC Deaminase in plant growth promotion. PhD Thesis, University of Water Loo, Canada.

    Google Scholar 

  • Penrose DM, Moffatt BA, Glick BR (2001) Determination of 1-aminocyclopropane-1-carboxylic acid (ACC) to assess the effects of ACC deaminase-containing bacteria on roots of canola seedlings. Can J Microbiol 47:77–80

    Article  PubMed  CAS  Google Scholar 

  • Ramanjulu S, Bartels D (2002) Drought and desiccation-induced modulation of gene expression in plants. Plant Cell Environ 25:141–151

    Article  PubMed  CAS  Google Scholar 

  • Reddy AJ, Rao IM (1968) Influence of induced water stress on chlorophyll components of proximal and distal leaflets of groundnut plants. Curr Sci 5:118–121

    Google Scholar 

  • Reed MLE, Glick BR (2005) Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can J Microbiol 51:1061–1069

    Article  PubMed  CAS  Google Scholar 

  • Reed AJ, Kretzmer KA, Naylor MW, Finn RF, Magin KM, Hammond BG, Leimgruber RM, Rogers SG, Fuchs RL (1996) A safety assessment of 1-Aminocyclopropane-1-carboxylic acid deaminase (ACCd) protein expressed in delayed ripening tomatoes. J Agric Food Chem 44:388–394

    Article  CAS  Google Scholar 

  • Reed MLE, Warner BG, Glick BR (2005) Plant growth-promoting bacteria facilitate the growth of the common reed Phragmites australis in the presence of copper or polycyclic aromatic hydrocarbons. Curr Microbiol 51:425–429

    Article  PubMed  CAS  Google Scholar 

  • Robison MM, Shah S, Tamot B, Pauls KP, Moffatt BA, Glick BR (2001) Reduced symptoms of Verticillium wilt in transgenic tomato expressing a bacterial ACC deaminase. Mol Plant Pathol 2:135–145

    Article  PubMed  CAS  Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102:1283–1292

    Article  PubMed  CAS  Google Scholar 

  • Schroth MN, Hancock JG (1982) Disease-suppressive soil and root-colonizing bacteria. Science 216:1376–1381

    Article  PubMed  CAS  Google Scholar 

  • Sergeeva E, Shah S, Glick BR (2006) Growth of transgenic canola (Brassica napus cv. Westar) expressing a bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene on high concentrations of salt. World J Microbiol Biotechnol 22:277–282

    Article  CAS  Google Scholar 

  • Sgroy V, Cassán F, Masciarelli O, Papa MFD, Lagares A, Luna V (2009) Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl Microbiol Biotechnol 85:371–381

    Article  PubMed  CAS  Google Scholar 

  • Shah S, Li J, Moffatt BA, Glick BR (1998) Isolation and characterization of ACC deaminase genes from two different plant growth-promoting rhizobacteria. Can J Microbiol 44:833–843

    Article  PubMed  CAS  Google Scholar 

  • Sheehy RE, Honma M, Yamada M, Sasaki T, Martineau B, Hiatt WR (1991) Isolation, sequence, and expression in Escherichia coli of the Pseudomonas sp. strain ACP gene encoding 1-aminocyclopropane-1-carboxylate deaminase. J Bacteriol 173:5260–5265

    PubMed  CAS  Google Scholar 

  • Stearns JC, Shah S, Dixon DG, Greenberg BM, Glick BR (2005) Tolerance of transgenic canola expressing 1-aminocyclopropane- 1-carboxylic acid deaminase to growth inhibition by nickel. Plant Physiol Biochem 43:701–708

    Article  PubMed  CAS  Google Scholar 

  • Strzelczyk E, Kampert M, Pachlewski R (1994) The influence of pH and temperature on ethylene production by mycorrhizal fungi of pine. Mycorrhiza 4:193–196

    Article  CAS  Google Scholar 

  • Sziderics AH, Rasche F, Trognitz F, Sessitsch A, Wilhelm E (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can J Microbiol 53:1195–1202

    Article  PubMed  CAS  Google Scholar 

  • Vessey KJ (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vineetha P (2007) ACC deaminase and defense related enzymes mediated by PGPR inducing drought tolerance and resistance against Macrophomina root rot in ground nut. M Sc, Thesis, Department of Plant Pathology, Tamil Nadu Agricultural University, India

    Google Scholar 

  • Wang CY (1987) Changes of polyamines and ethylene in cucumber seedlings in response to chilling stress. Physiol Plant 69:253–257

    Article  CAS  Google Scholar 

  • Wang C, Knill E, Glick BR, Defago G (2000) Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can J Microbiol 46:898–907

    PubMed  CAS  Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35:155–189

    Article  CAS  Google Scholar 

  • Yue H, Mo W, Li C, Zheng Y, Li H (2007) The salt stress relief and growth promotion effect of Rs-5 on cotton. Plant Soil 297:139–145

    Article  CAS  Google Scholar 

  • Zahir ZA, Ghani U, Naveed M, Nadeem SM, Asghar HN (2009) Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Arch Microbiol 191:415–424

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK, Hasegawa PM, Bressan RA (1997) Molecular aspects of osmotic stress in plants. Crit Rev Plant Sci 16:253–277

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Saravanakumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Saravanakumar, D. (2012). Rhizobacterial ACC Deaminase in Plant Growth and Stress Amelioration. In: Maheshwari, D. (eds) Bacteria in Agrobiology: Stress Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23465-1_9

Download citation

Publish with us

Policies and ethics