Skip to main content

Mesoscopics in Graphene: Dirac Points in Periodic Geometries

  • Chapter
  • First Online:
Graphene Nanoelectronics

Part of the book series: NanoScience and Technology ((NANO))

  • 5345 Accesses

Abstract

We review the interesting physics associated with two possible realizations of mesoscopic graphene systems where periodicity plays an important role: graphene rings, and graphene in a superlattice potential. The electronic spectra of graphene rings contain signatures of “effective time reversal symmetry breaking,” which are naturally interpreted in terms of effective magnetic flux contained in the ring, even when no real flux is present. This remarkable behavior arises because the low energy physics of electrons is controlled by a Dirac equation. This also creates unusual effects in a one dimensional superlattice potential, which allows the number of Dirac points at zero energy to be manipulated by the strength and/or period of the potential. The emergence of new Dirac points is accompanied by strong signatures in the conduction properties of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Akkermans, G. Montambaux, Mesoscopic Physics of Electrons and Photons, (Cambridge, New York, 2007).

    Book  Google Scholar 

  2. F. Schwabl, Advanced Quantum Mechanics, (Springer, Heidelberg, 2008)

    Google Scholar 

  3. L. Brey, H.A. Fertig, Phys. Rev. B 73, 235411 (2006)

    Article  ADS  Google Scholar 

  4. T. Ando, J. Phys. Soc. Jpn. 74, 777 (2005)

    Article  ADS  MATH  Google Scholar 

  5. D.P. DiVincenzo, E.J. Mele, Phys. Rev. B 29, 1685 (1984)

    Article  ADS  Google Scholar 

  6. L. Brey, H.A. Fertig, Phys. Rev. B 73, 195408 (2006)

    Article  ADS  Google Scholar 

  7. M. Fujita et al., J. Phys. Soc. Jpn. 65, 1920 (1996)

    Article  ADS  Google Scholar 

  8. J.P. Robinson, H. Schomerus, Phys. Rev. B. 76, 115430 (2007); A. Onipko, Phys. Rev. B 78, 245412 (2008); L. Malysheva and A. Onipko, Phys. Rev. Lett. 100, 186806 (2008)

    Google Scholar 

  9. A.R. Akhmerov, C.W.J. Beenakker, Phys. Rev. B 77, 085423 (2008)

    Article  ADS  Google Scholar 

  10. Y. Imry, Introduction to Mesoscopic Physics, (Oxford, New York, 1997)

    Google Scholar 

  11. S. Nakamura, K. Wakabayashi, A. Yamashiro, K. Harigaya, Physica E 22, 684 (2004)

    Article  ADS  Google Scholar 

  12. H. Yoshioka, S. Higashibata, J. Phys.: Conf. Ser. 150, 022105 (2009)

    Google Scholar 

  13. C. Beenakker, Rev. Mod. Phys. 80, 1337 (2008)

    Article  ADS  Google Scholar 

  14. M.V. Berry, R.J. Mondragon, Proc. R. Soc. London, Ser. A 412, 53 (1987)

    Google Scholar 

  15. P. Recher, B. Trauzettel, A. Rycerz, Y. Blanter, C. Beenakker, A. Morpurgo, Phys. Rev. B 76, 235404 (2007)

    Article  ADS  Google Scholar 

  16. D. Bahamon, A.L.C. Pereira, P.A. Schulz, Phys. Rev. B 79, 125414 (2009)

    Article  ADS  Google Scholar 

  17. J. Wurm, A. Rycerz, I. Adagideli, M. Wimmer, K. Richter, H.U. Baranger, Phys. Rev. Lett. 102, 056806 (2009)

    Article  ADS  Google Scholar 

  18. J. Wurm, M. Wimmer, H. Baranger, K. Richter, Semicond. Sci. Technol. 25, 034003 (2010)

    Article  ADS  Google Scholar 

  19. J.A. Fuerst et al., N. Journal of Phys. 11, 095020 (2009); T.G. Pedersen et al., Phys. Rev. Lett. 100, 136804 (2008)

    Google Scholar 

  20. S. Russo, J.B. Oostinga, D. Wehenkel, H.B. Heersche, S.S. Sobhani, L.M.K. Vandersypen, A.F. Morpurgo, Phys. Rev. B 77, 085413 (2008)

    Article  ADS  Google Scholar 

  21. F. Molitor, M. Huefner, A. Jacobsen, A. Pioda, C. Stampfer, K. Ensslin, & T. Ihn, New. J. Phys. 12, 043054 (2010)

    Article  Google Scholar 

  22. T. Luo, A. Iyengar, H.A. Fertig, L. Brey, Phys. Rev. B 80, 165310 (2009)

    Article  ADS  Google Scholar 

  23. A. Iyengar, T. Luo, H. A. Fertig, L. Brey, Phys. Rev. B 78, 235411 (2008)

    Article  ADS  Google Scholar 

  24. J.J. Palacios, J. Fernandez-Rossier, L. Brey, H.A. Fertig, Semiconduct. Sci. Technol. 25, 033003 (2010)

    Article  ADS  Google Scholar 

  25. A. Young, P. Kim 2009 Nat. Phys. 5, 222 (2009)

    Google Scholar 

  26. B. Huard, J.A. Sulpizio, N. Stander, K. Todd, B. Yang, D. Goldhaber-Gordon, Phys. Rev. Lett. 98, 236803 (2007)

    Article  ADS  Google Scholar 

  27. N. Stander, B. Huard, D. Goldhaber-Gordon, Phys. Rev. Lett. 102, 026807 (2009)

    Article  ADS  Google Scholar 

  28. J.R. Williams, L. DiCarlo, C.M. Marcus, Science 317, 638 (2007)

    Article  ADS  Google Scholar 

  29. S. Marchini, J. Wintterlin, Phys. Rev. B 76, 075429 (2007)

    Article  ADS  Google Scholar 

  30. A.L.V. de Parga, F. Calleja, B. Borca, J.M.C.G. Passeggi, J. Hinarejos, F. Guinea, R. Miranda, Phys. Rev. Lett. 100, 056807 (2008)

    Google Scholar 

  31. Y. Pan, N. Jiang, J.T. Sun, D.X. Shi, S.X. Du, F. Liu, & H.-J. Gao, Advanced Materials 21, 2777 (2009)

    Article  Google Scholar 

  32. J.C. Meyer, C.O. Girit, M.F. Crommie, A. Zettl, Appl. Phys. Lett. 92, 123110 (2008)

    Article  ADS  Google Scholar 

  33. W. Bao, Feng Miao, Zhen Chen, Hang Zhang, Wanyoung Jang, Chris Dames, Chun Ning Lau, Nat. Nanotech. 4, 562 (2009)

    Article  ADS  Google Scholar 

  34. C. Park, Y.-W. Son, L. Yang, M.L. Cohen, S.G. Louie, Nano Lett. 8, 2920 (2008)

    Article  ADS  Google Scholar 

  35. L. Brey, H.A. Fertig, Phys. Rev. Lett. 103, 046809 (2009)

    Article  ADS  Google Scholar 

  36. C. Park, Y.-W. Son, L. Yang, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 103, 046808 (2009)

    Article  ADS  Google Scholar 

  37. C. Park, L. Yang, Y-W. Son, M.L. Cohen, S.G. Louie, Phys.Rev.Lett. 101, 126804 (2008)

    Google Scholar 

  38. J. Tworzydlo, B. Trauzettel, M. Titov, A. Rycerz, C.W. Beenakker, Phys. Rev. Lett. 96, 246802 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank many colleagues for collaborations and discussions related to this work. These include A.P. Iyengar, Tianhuan Luo, D. Arovas, and K. Ziegler. Funding for the work described here was provided by the MEC-Spain via Grant No. FIS2009-08744 (LB), and by the NSF through Grant No. DMR-0704033 (HAF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Fertig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fertig, H.A., Brey, L. (2011). Mesoscopics in Graphene: Dirac Points in Periodic Geometries. In: Raza, H. (eds) Graphene Nanoelectronics. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22984-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22984-8_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20467-8

  • Online ISBN: 978-3-642-22984-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics