Skip to main content

Detonation Instability

  • Chapter
  • First Online:
Shock Waves Science and Technology Library, Vol. 6

Part of the book series: Shock Wave Science and Technology Reference Library ((SHOCKWAVES,volume 6))

Abstract

Detonations are a complex spatial-temporal unstable phenomenon. In theory, the complete dynamics of this phenomenon requires a time-dependent multidimensional solution that describes the inherent instability of the detonation wave. The effect of instability is a fundamental factor on the dynamic behavior of detonation waves and thus governs practical properties of an explosive mixture such as detonation limits, critical tube diameter, or initiation energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abarbanel, H.D.: The analysis of observed chaotic data in physical systems. Rev. Mod. Phys. 65, 1331–1392 (1993)

    Google Scholar 

  2. Abouseif, G.E., Toong, T.Y.: Theory of unstable detonations. Combust. Flame 45, 67–94 (1982)

    Google Scholar 

  3. Ait Abderrahmane, H., Paquet, F., Ng, H.D.: Applying nonlinear dynamic theory to one-dimensional pulsating detonations. Combust. Theor. Model. 15, 205 (2011)

    Google Scholar 

  4. Albano, A.M., Muench, J., Schwartz, C., Mees, A.I., Rap, P.E.: Singular-value decomposition and the Grassberger-Procaccia algorithm. Phys. Rev. A. 38, 3017–3026 (1988)

    Google Scholar 

  5. Alpert, R.L., Toong, T.Y.: Periodicity in exothermic hypersonic flows about blunt projectiles. Astro. Acta. 17, 539–560 (1972)

    Google Scholar 

  6. Asahara, M., Tsuboi, N., Hayashi, A.K.: Two-dimensional simulation on propagation mechanism of H2∕O2 cylindrical detonation with a detailed reaction model. Combust. Sci. Technol. 182(11–12), 1884–1900 (2010)

    Google Scholar 

  7. Austin, J.M.: The role of instabilities in gaseous detonation. PhD thesis, California Institute of Technology, CA (2003)

    Google Scholar 

  8. Barthel, H.O.: Predicted spacings in hydrogen-oxygen-argon detonations. Phys. Fluids 17(8), 1547–1553 (1974)

    Google Scholar 

  9. Bates, K.R., Nikiforakis, N., Holder, D.: Richtmyer-Meshkov instability induced by the interaction of a shock wave with a rectangular block of SF6. Phys. Fluids 19, 036101 (2007)

    Google Scholar 

  10. Ben-Dor, G.: Shock Reflection Phenomena. Springer, New York (1992)

    Google Scholar 

  11. Bergé, P., Pomeau, Y., Vidal, C.: Order Within Chaos. Wiley, New York (1986)

    Google Scholar 

  12. Bourlioux, A.: Numerical study of unstable detonation. PhD Thesis, Princeton University, New Jersey (1991)

    Google Scholar 

  13. Bourlioux, A., Majda, A.J.: Theoretical and numerical structure for unstable two-dimensional detonations. Combust. Flame 90, 211–229 (1992)

    Google Scholar 

  14. Bourlioux, A., Majda, A.J., Roytburd, V.: Nonlinear development of low frequency one-dimensional instabilities for reacting shocks. In: Fife, P., Linan, A., Williams, F. (eds.) Dynamical Issues in Combustion Theory. IMA Volumes in Mathematics and Its Applications, vol. 35, pp. 63–83. Springer, New York (1991)

    Google Scholar 

  15. Bourlioux, A., Majda, A.J., Roytburd, V.: Theoretical and numerical structure for unstable one-dimensional detonations. SIAM J. Appl. Math. 51, 303–343 (1991)

    Google Scholar 

  16. Broomhead, D.S., King, G.P.: Extracting qualitative dynamics from experimental data. Physica D 20, 217–236 (1986)

    Google Scholar 

  17. Browne, S., Shepherd, J.E.: Linear stability of detonations with reversible chemical reactions. In: Proceedings of the Western States Section/Combustion Institute, Sandia National Laboratories, Livermore (2007)

    Google Scholar 

  18. Buckmaster, J.D., Ludford, G.S.S.: The effect of structure on the stability of detonations. I – Role of the induction zone. Proc. Combust. Inst. 21, 1669–1676 (1987)

    Google Scholar 

  19. Buckmaster, J.D., Neves, J.: One-dimensional detonation stability: The spectrum for infinite activation energy. Phys. Fluids 31(12), 3571–3576 (1988)

    Google Scholar 

  20. Cael, G., Ng, H.D., Bates, K.R., Nikiforakis, N., Short, M.: Numerical simulation of detonation structures using a thermodynamically consistent and fully conservative (TCFC) reactive flow model for multi-component computations. Proc. R. Soc. Lond. A. 465, 2135–2153 (2009)

    Google Scholar 

  21. Choi, J.Y., Ma, F.H., Yang, V.: Some numerical issues on simulation of detonation cell structures. Combust. Expl. Shock Waves 44(5), 560–578 (2008)

    Google Scholar 

  22. Clavin, P., Daou, R.: Instability threshold of gaseous detonations. J. Fluid Mech. 482, 181–206 (2003)

    Google Scholar 

  23. Clavin, P., Denet, B.: Diamond patterns in the cellular front of an overdriven detonation. Phys. Rev. Lett. 88, 044502 (2002)

    Google Scholar 

  24. Clavin, P., He, L.: Stability and nonlinear dynamics of one-dimensional overdriven detonations in gases. J. Fluid Mech. 306, 353–378 (1996)

    Google Scholar 

  25. Clavin, P., William, F.A.: Dynamics of planar gaseous detonations near Chapman-Jouguet conditions for small heat release. Combust. Theor. Model. 6, 127–139 (2002)

    Google Scholar 

  26. Clifford, L.J., Milne, A.M., Turanyi, T., Boulton, D.: An induction parameter model for shock-induced hydrogen combustion simulations. Combust. Flame 113, 106–118 (1998)

    Google Scholar 

  27. Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock Waves. Springer, New York (1948)

    Google Scholar 

  28. Daimon, Y., Matsuo, A.: Detailed features of one-dimensional detonations. Phys. Fluids 15(1), 112–122 (2003)

    Google Scholar 

  29. Daimon, Y., Matsuo, A.: Unsteady features on one-dimensional hydrogen-air detonations. Phys. Fluids 19, 116101 (2007)

    Google Scholar 

  30. Davidenko, D., Mével, R., Dupré, G.: Numerical study of the detonation structure in rich \(\mathrm{{H}_{2}\mbox{ -}N{O}_{2}/{N}_{2}{O}_{4}}\) and very lean H2-N2O mixtures. Shock Waves 21(2), 85–99 (2011)

    Google Scholar 

  31. Deiterding, R., Bader, G.: High-resolution simulation of detonations with detailed chemistry. In: Warnecke, G. (ed.) Analysis and Numerics for Conservation Laws, pp. 69–91. Springer, Berlin (2005)

    Google Scholar 

  32. Deledicque, V., Papalexandris, M.V.: Computational study of three-dimensional gaseous detonation structures. Combust. Flame 144, 821–837 (2006)

    Google Scholar 

  33. Desbordes, D., Presles, H.N., Joubert, F., Douala, C.G.: Etude de la détonation de mélanges pauvres \(\mathrm{{H}_{2}} -\mathrm{N{O}_{2}/{N}_{2}{O}_{4}}\). CR Mécanique 332, 993–999 (2004)

    Google Scholar 

  34. Dionne, J.-P.: Numerical study of the propagation of non-ideal detonations. PhD Thesis, McGill University, Montréal (2000)

    Google Scholar 

  35. Dionne, J.-P., Ng, H.D., Lee, J.H.S.: Transient development of friction induced low velocity detonations. Proc. Combust. Inst. 28, 645–651 (2000)

    Google Scholar 

  36. Döring, W.: On detonation processes in gases. Ann. Phys. 43, 421–436 (1943)

    Google Scholar 

  37. Dou, H.-S., Tsai, H.M., Khoo, B.C., Qiu, J.: Simulations of detonation wave propagation in rectangular ducts using a three-dimensional WENO scheme. Combust. Flame 154, 644–659 (2008)

    Google Scholar 

  38. Eckett, C.A.: Numerical and analytical studies of the dynamics of gaseous detonations. PhD thesis, California Institute of Technology, Pasadena (2000)

    Google Scholar 

  39. Eckett, C.A., Quirk, J.J., Shepherd, J.E.: The role of unsteadiness in direct initiation of gaseous detonations J. Fluid Mech. 421, 147–183 (2000)

    Google Scholar 

  40. Eckmann, J.P., Kamphorst, S.O., Ruelle, D., Ciliberto, S.: Lyapunov exponents from time series. Phys. Rev. A. 34(6), 4971–4979 (1986)

    Google Scholar 

  41. Edwards, D.H., Jones, A.T., Phillips, D.E.: The location of the Chapman-Jouguet surface in multi-headed detonations. J. Phys. D Appl. Phys. 9, 1331–1342 (1976)

    Google Scholar 

  42. Erpenbeck, J.J.: Stability of steady-state equilibrium detonations. Phys. Fluids 5, 604–614 (1962)

    Google Scholar 

  43. Erpenbeck, J.J.: Stability of idealized one-reaction detonations. Phys. Fluids 7, 684–696 (1964)

    Google Scholar 

  44. Erpenbeck, J.J.: Nonlinear theory of unstable one-dimensional detonations. Phys. Fluids 10, 274–288 (1967)

    Google Scholar 

  45. Erpenbeck, J.J.: Nonlinear theory of unstable two-dimensional detonation. Phys. Fluids 13, 2007–2026 (1970)

    Google Scholar 

  46. Eto, K., Tsuboi, N., Hayashi, A.K.: Numerical study on three-dimensional CJ detonation waves: Detailed propagating mechanism and existence of OH radical. Proc. Combust. Inst. 30, 1907–1913 (2005)

    Google Scholar 

  47. Feigenbaum, M.J.: Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19(1), 25–52 (1978)

    Google Scholar 

  48. Feigenbaum, M.J.: Low dimensional dynamics and the period doubling scenario. Lect. Notes Phys. 179, 131–148 (1983)

    Google Scholar 

  49. Feigenbaum, M.J.: Universal behavior in nonlinear systems. Phys. D 7, 16–39 (1983)

    Google Scholar 

  50. Fickett, W., Davis, W.C.: Detonation. University of California Press, Berkeley (1979)

    Google Scholar 

  51. Fickett, W., Wood, W.W.: Flow calculations for pulsating one-dimensional detonations. Phys. Fluids 9, 903–916 (1966)

    Google Scholar 

  52. Fujiwara, T., Reddy, K.V.: Propagation mechanism of detonation-three-dimensional phenomena. Mem. Facul. Eng. Nagoya Univ. 41, 1–18 (1989)

    Google Scholar 

  53. Gamezo, V.N., Desbordes, D., Oran, E.S.: Formation and evolution of two-dimensional cellular detonations. Combust. Flame 116, 154–165 (1999)

    Google Scholar 

  54. Gamezo, V.N., Desbordes, D., Oran, E.S.: Two-dimensional reactive dynamics in cellular detonation waves. Shock Waves 9, 11–17 (1999)

    Google Scholar 

  55. Gavrikov, A.I., Efimenko, A.A., Dorofeev, S.B.: A model for detonation cell size prediction from chemical kinetics. Combust. Flame 120, 19–33 (2000)

    Google Scholar 

  56. Gorchkov, V., Kiyanda, C.B., Short, M., Quirk, J.J.: A detonation stability formulation for arbitrary equations of state and multi-step reaction mechanisms. Proc. Combust. Inst. 31(2), 2397–2405 (2006)

    Google Scholar 

  57. Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Phys. D 9, 189–208 (1983)

    Google Scholar 

  58. Grassberger, P., Procaccia, I.: Dimensions and entropies of strange attractors from a fluctuating dynamics approach. Phys. D 13, 34–54 (1984)

    Google Scholar 

  59. Guilly, V., Khasainov, B., Presles, H.N., Desbordes, D.: Simulation numérique des détonation à double structure cellulaire. CR Mecanique 334, 679–685 (2006)

    Google Scholar 

  60. Guirguis, R., Oran, E.S., Kailasanath, K.: The effect of energy release on the regularity of detonation cells in liquid nitromethane. Proc. Combust. Inst. 21, 1639–1668 (1986)

    Google Scholar 

  61. Hao, B.L.: Chaos, An Introduction and Reprints Volume. World Scientific, Singapore (1984)

    Google Scholar 

  62. He, L.: Theory of weakly unstable multi-dimensional detonation. Combust. Sci. Technol. 160, 65–101 (2000)

    Google Scholar 

  63. He, L., Clavin, P.: On the direct initiation of gaseous detonations by an energy source. J. Fluid Mech. 277, 227–248 (1994)

    Google Scholar 

  64. He, L., Lee, J.H.S. The dynamical limit of one-dimensional detonations. Phys. Fluids 7(5), 1151–1158 (1995)

    Google Scholar 

  65. Helzel, C.: Numerical approximation of conservation laws with stiff source term for the modelling of detonation waves. Thesis, Otto-von-Guericke Universität Magdeburg (2000)

    Google Scholar 

  66. Henrick, A.K., Aslam, T.D., Powers, J.M.: Simulations of pulsating one-dimensional detonations with true fifth order accuracy. J. Comp. Phys. 213, 311–329 (2006)

    Google Scholar 

  67. Hu, X.Y., Khoo, B.C., Zhang, D.L., Jiang, Z.L.: The cellular structure of a two-dimensional \(\mathrm{{H}_{2}/{O}_{2}/Ar}\) detonation wave. Combust. Theor. Model. 8, 339–359 (2004)

    Google Scholar 

  68. Hwang, P., Fedkiw, R.P., Merriman, B., Aslam, T.D., Karagozian, A.R., Osher, S.J.: Numerical resolution of pulsating detonation waves. Combust. Theor. Model. 4, 217–240 (2000)

    Google Scholar 

  69. Inaba, K., Matsuo, A., Shepherd, J.E.: Soot track formation by shock waves and detonations. In: Proceedings of the 20th International Colloquium of Dynamics of Explosion and Reactive Systems, Montreal (2005)

    Google Scholar 

  70. Jiang, Z.L., Han, G., Wang, C., Zhang, F.: Self-organized generation of transverse waves in diverging cylindrical detonations. Combust. Flame 156, 1653–1661 (2009)

    Google Scholar 

  71. Joubert, F., Desbordes, D., Presles, H.N.: Structure de la détonation des mélanges \({\mathrm{H}}_{2} -\mathrm{N{O}_{2}/{N}_{2}{O}_{4}}\). CR Mécanique 331, 365–372 (2003)

    Google Scholar 

  72. Kailasanath, K., Oran, E.S., Boris, J.P., Young, T.R.: Determination of detonation cell size and the role of transverse waves in two-dimensional detonations. Combust. Flame 61, 199–209 (1985)

    Google Scholar 

  73. Kantz, H.: A robust method to estimate the maximal Lyapunov exponent of a time series. Phys. Lett. A 185, 77–87 (1994)

    Google Scholar 

  74. Kaplan, D., Glass, L.: Understanding Nonlinear Dynamics. Springer, New York (1995)

    Google Scholar 

  75. Karnesky, J., Shepherd, J.E.: Detonation in nitrated hydrocarbons. In: 32nd International Symposium on Combustion, Work in progress poster W4P023, Montréal, Canada, Aug. 3–8 (2008)

    Google Scholar 

  76. Kasimov, A.R., Stewart, D.S.: Spinning instability of gaseous detonations. J. Fluid Mech. 466, 179–203 (2002)

    Google Scholar 

  77. Kasimov, A.R., Stewart, D.S.: On the dynamics of self-sustained one-dimensional detonations: A numerical study in the shock-attached frame. Phys. Fluids 16, 3566–3578 (2004)

    Google Scholar 

  78. Kasimov, A.R., Stewart, D.S.: Theory of detonation initiation and comparison with experiment. Report #1035, Theoretical and Applied Mechanics, UIUC (2004)

    Google Scholar 

  79. Kasimov, A.R., Stewart, D.S.: Asymptotic theory of evolution and failure of self-sustained detonations. J. Fluid Mech. 525, 161–192 (2005)

    Google Scholar 

  80. Khokhlov, A.M., Austin, J.M., Pintgen, F., Shepherd, J.E.: Numerical study of the detonation wave structure in ethylene-oxygen mixtures. In: 42th AIAA Aerospace Science Meeting and Exhibit, AIAA 2004-0792, Reno (2004)

    Google Scholar 

  81. Lee, H.I., Stewart, D.S.: Calculation of linear detonation instability: One dimensional instability of planar detonations. J. Fluid Mech. 216, 103–132 (1990)

    Google Scholar 

  82. Lee, J.H.S.: The Detonation Phenomenon. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  83. Lee, J.H.S., Guirao, C.M.: Gasdynamic effects of fast exothermic reactions. In: Capellos, C., Walker, R.F. (eds.) Fast Reactions in Energetic Systems, pp. 245–313. D. Reidel Publishing Company, Dordrecht (1981)

    Google Scholar 

  84. Lee, J.H.S., Radulescu, M.I.: On the hydrodynamic thickness of cellular detonations. Combust. Expl. Shock Waves 41, 745–765 (2005)

    Google Scholar 

  85. Lee, J.H.S., Soloukhin, R.I., Oppenheim, A.K.: Current views on gaseous detonation. Astro. Acta 14, 565–584 (1969)

    Google Scholar 

  86. Leung, C., Radulescu, M.I., Sharpe, G.J.: Characteristics analysis of the one-dimensional dynamics of chain-branching detonations. Phys. Fluids 22, 126101 (2010)

    Google Scholar 

  87. Li, T.Y., Yorke, J.A.: Period three implies chaos. Am. Math. Mon. 82, 985–992 (1975)

    Google Scholar 

  88. Liang, Z., Bauwens, L.: Detonation structure with pressure-dependent chain-branching kinetics. Proc. Combust. Inst. 30(2), 1879–1887 (2005)

    Google Scholar 

  89. Liang, Z., Khastoo, B., Bauwens, L.: Effect of reaction order on stability of planar detonation waves. Int. J. Comput. Fluid Dynam. 19(2), 131–142 (2005)

    Google Scholar 

  90. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Google Scholar 

  91. Luche, J., Desbordes, D., Presles, H.N.: Détonation de mélanges \({\mathrm{H}}_{2} -\mathrm{N{O}_{2}/{N}_{2}{O}_{4}} -\mathrm{Ar}\). CR Mecanique 334, 323–327 (2006)

    Google Scholar 

  92. Lutz, A.E., Kee, R.J., Miller, J.A., Dwyer, H.A., Oppenheim, A.K.: Dynamic effects of autoignition centers for hydrogen and C1,2-hydrocarbon fuels. Proc. Combust. Inst. 22, 1683–1693 (1988)

    Google Scholar 

  93. Mach, P., Radulescu, M.I.: Mach reflection bifurcations as a mechanism of cell multiplication in gaseous detonations. Proc. Combust. Inst. 33(2), 2279–2285 (2011)

    Google Scholar 

  94. Majda, A.: Criteria for regular spacing of reacting Mach stems. Proc. Natl. Acad. Sci. U.S.A. 84(17), 6011–6014 (1987)

    Google Scholar 

  95. Majda, A., Roytburd, V.: Low-frequency multidimensional instabilities for reacting shock waves. Stud. Appl. Math. 87, 135–174 (1992)

    Google Scholar 

  96. Mañé, R: On the dimension of the compact invariant sets of certain nonlinear maps. Lect. Notes Math. 898, 230–242 (1981)

    Google Scholar 

  97. Massa, L., Austin, J.M., Jackson, T.L.: Triple-point shear layers in gaseous detonation waves. J. Fluid Mech. 586, 205–248 (2007)

    Google Scholar 

  98. Mazaheri, B.K.: Mechanism of the onset of detonation in blast initiation. PhD thesis, McGill University, Montreal (1997)

    Google Scholar 

  99. McVey, J.B., Toong, T.Y.: Mechanism of instabilities of exothermic hypersonic blunt body flows. Combust. Sci. Tech. 3, 63–76 (1971)

    Google Scholar 

  100. Mével, R., Lafosse, F., Catoire, L., Chaumeix, N., Dupré, G., Paillard, C.E.: Induction delay times and detonation cell size prediction of hydrogen–nitrous oxide–argon mixtures. Combust. Sci. Technol. 180, 1858–1875 (2008)

    Google Scholar 

  101. Mével, R., Davidenko, D., Lafosse, F., Dupré, G., Paillard, C.E.: Prediction of detonation cell size in hydrogen-nitrous oxide-argon mixtures using chemical kinetics correlations and 2-D numerical simulation code. In: Proceedings of the 7th International Symposium on Hazards, Prevention, and Mitigation of Industrial Explosions (ISHPMIE), vol. 2, pp. 41–53, St. Petersburg, Russia (2008)

    Google Scholar 

  102. Mével, R., Javoy, S., Lafosse, F., Chaumeix, N., Dupré, G., Paillard, C.E.: Hydrogen-nitrous oxide delay time: Shock tube experimental study and kinetic modeling. Proc. Combust. Inst. 32, 359–366 (2009)

    Google Scholar 

  103. Meyer, J.W., Oppenheim, A.K.: Coherence theory of the strong ignition limit. Combust. Flame 17, 65–68 (1971)

    Google Scholar 

  104. Meyer, J.W., Oppenheim, A.K.: On the shock-induced ignition of explosive gases. Proc. Combust. Inst. 13, 1153–1164 (1971)

    Google Scholar 

  105. Moen, I.O., Funk, J.W., Ward, S.A., Rude, G.M., Thibault, P.A.: Detonation length scales for fuel-air explosives. Prog. Astronaut. Aeronaut. 94, 55–79 (1984)

    Google Scholar 

  106. Moen, I.O., Sulmistras, A., Thomas, G.O., Bjerketvedt, D., Thibault, P.A.: Influence of cellular regularity on the behavior of gaseous detonations. Prog. Astronaut. Aeronaut. 106, 220–243 (1986)

    Google Scholar 

  107. Ng, H.D., Lee, J.H.S.: Direct initiation of detonation with a multi-step reaction scheme. J. Fluid Mech. 476, 179–211 (2003)

    Google Scholar 

  108. Ng, H.D., Lee, J.H.S.: Comments on explosion problems for hydrogen safety. J. Loss Preven. Proc. Ind. 21(2), 136–146 (2008)

    Google Scholar 

  109. Ng, H.D., Higgins, A.J., Kiyanda, C.B., Radulescu, M.I., Lee, J.H.S., Bates, K.R., Nikiforakis, N.: Nonlinear dynamics and chaos analysis of one-dimensional pulsating detonations. Combust. Theor. Model. 9, 159–170 (2005)

    Google Scholar 

  110. Ng, H.D., Radulescu, M.I., Higgins, A.J., Nikiforakis, N., Lee, J.H.S.: Numerical Investigation of the instability for one-dimensional Chapman-Jouguet detonations with chain-branching kinetics. Combust. Theor. Model. 9, 385–401 (2005)

    Google Scholar 

  111. Ng, H.D., Ju, Y., Lee, J.H.S.: Assessment of detonation hazards in high-pressure hydrogen storage from chemical sensitivity analysis. Int. J. Hydrogen Energ. 32(1), 93–99 (2007)

    Google Scholar 

  112. Ng, H.D., Chao, J., Yatsufusa, T., Lee, J.H.S.: Measurement and chemical kinetic prediction of detonation sensitivity and cellular structure characteristics in dimethyl ether-oxygen mixtures. Fuel 88(1), 124–131 (2008)

    Google Scholar 

  113. Ng, H.D., Ait Abderrahmane, H., Bates, K.R., Nikiforakis, N.: Geometrical characterization of cellular irregularity of gaseous detonation front using a fractal approach. In: 23rd International Colloquium on the Dynamics of Explosions and Reactive Systems, Irvine (2011)

    Google Scholar 

  114. Ng, H.D., Ait Abderrahmane, H., Bates, K.R., Nikiforakis, N.: The growth of fractal dimension of a scalar interface evolution from the interaction of a shock wave with a rectangular block of SF6. Commun. Nonlinear Sci. Numer. Simul. 16(11), 4158–4162 (2011)

    Google Scholar 

  115. Oppenheim, A.K.: Dynamic features of combustion. Phil. Trans. R. Soc. A 315, 471–508 (1985)

    Google Scholar 

  116. Oran, E.S., Boris, J.P.: Numerical Simulation of Reactive Flow. Elsevier, New York (1987)

    Google Scholar 

  117. Oran, E.S., Young, T.R., Boris, J.P., Picone, J.M., Edwards, D.H.: A study of detonation structure: The formation of unreacted gas pockets. Proc. Combust. Inst. 19, 573–582 (1982)

    Google Scholar 

  118. Oran, E.S., Kailasanath, K., Guirguis, R.H.: Numerical simulations of the development and structure of detonations. Prog. Astron. Aero. 114, 155–169 (1988)

    Google Scholar 

  119. Oran, E.S., Weber, J.W., Stefaniw, E.I., Lefebvre, M.H., Anderson, J.D.: A numerical study of a two-dimensional \({\mathrm{H}}_{2}\mbox{ -}{\mathrm{O}}_{2}\mbox{ -}\mathrm{Ar}\) detonation using a detailed chemical reaction model. Combust. Flame 113, 147–163 (1998)

    Google Scholar 

  120. Packard, N.H., Crutchfield, J.P., Farmer, J.D., Shaw, R.S.: Geometry from a time series. Phys. Rev. Lett. 45, 712–716 (1980)

    Google Scholar 

  121. Papalexandris, M.V., Leonard, A., Dimotakis, P.E.: Unsplit schemes for hyperbolic conservation laws with source terms in one space dimension. J. Comput. Phys. 134, 31–61 (1997)

    Google Scholar 

  122. Petersen, E.L., Hanson, R.K.: Reduced kinetics mechanisms for ram accelerator combustion. J. Prop. Power. 15, 591 (1999)

    Google Scholar 

  123. Pintgen, F., Shepherd, J.E.: Quantitative analysis of reaction front geometry in detonation. In: Roy, G.D., Berlin, A.A., Frolov, S.M., Shepherd, J.E., Tsyganov, S.A. (eds.) International Colloquium on Application of Detonation for Propulsion, pp. 23–28. Torus Press, Moscow (2004)

    Google Scholar 

  124. Pintgen, F., Eckett, C.A., Austin, J.M., Shepherd, J.E.: Direct observations of reaction zone structure in propagating detonations. Combust. Flame 133, 211–229 (2003)

    Google Scholar 

  125. Powers, J.M.: Review of multiscale modeling of detonation. J. Propul. Power 22, 1217–1229 (2006)

    Google Scholar 

  126. Powers, J.M., Aslam, T.D.: Exact solution for multidimensional compressible reactive flow for verifying numerical algorithms. AIAA J. 44(2), 337–344 (2006)

    Google Scholar 

  127. Powers, J.M., Paolucci, S.: Accurate spatial resolution estimates for reactive supersonic flow with detailed chemistry. AIAA J. 43(5), 1088–1099 (2005)

    Google Scholar 

  128. Presles, H.N., Desbordes, D., Guirard, M., Guerraud, G.: Gaseous nitromethane and nitromethane–oxygen mixtures: A new detonation structure. Shock Waves 6, 111–114 (1996)

    Google Scholar 

  129. Quirk, J.J.: Godunov-type schemes applied to detonation flows. In: Buckmaster, J., et al. (eds.) Combustion in High-Speed Flows, pp. 575–596. Kluwer, Dordrecht (1994)

    Google Scholar 

  130. Radulescu, M.I.: The propagation and failure mechanism of gaseous detonations: Experiments in porous-walled tubes. PhD thesis, McGill University, Montreal (2003)

    Google Scholar 

  131. Radulescu, M.I., Lee, J.H.S.: The failure mechanism of gaseous detonations – Experiments in porous wall tubes. Combust. Flame 131, 29–46 (2002)

    Google Scholar 

  132. Radulescu, M.I., Ng, H.D., Lee, J.H.S., Varatharajan, B.: The effect of argon dilution on the stability of acetylene-oxygen detonations. Proc. Combust. Inst. 29, 2825–2831 (2002)

    Google Scholar 

  133. Radulescu, M.I., Sharpe, G.J., Lee, J.H.S., Kiyanda, C., Higgins, A.J., Hanson, R.K.: The ignition mechanism in irregular structure gaseous detonations. Proc. Combust. Inst. 30, 1859–1867 (2005)

    Google Scholar 

  134. Radulescu, M.I., Sharpe, G.J., Law, C.K., Lee, J.H.S.: The hydrodynamic structure of unstable cellular detonations J. Fluid Mech. 580, 31–81 (2007)

    Google Scholar 

  135. Rosenstein, M.T., Collins, J.J., De Luca, C.J.: A practical method for calculating largest Lyapunov exponents from small data sets. Phys. D 65, 117–134 (1993)

    Google Scholar 

  136. Sánchez, A.L., Carretero, M., Clavin, P., Williams, F.A.: One-dimensional overdriven detonations with branched-chain kinetics. Phys. Fluids 13, 776–792 (2001)

    Google Scholar 

  137. Schultz, E., Shepherd, J.E.: Validation of detailed reaction mechanisms for detonation simulation. GALCIT Technical Report, FM99-05, California Institute of Technology, USA (2000)

    Google Scholar 

  138. Sello, S.: Time series forecasting: A nonlinear dynamics approach. LANL 2726 preprint archive Physics, arXiv:physics/9906035v2 [physics.data-an] (1999)

    Google Scholar 

  139. Sharpe, G.J.: Linear stability of idealized detonations. Proc. R. Soc. Lond. A 453, 2603–2625 (1997)

    Google Scholar 

  140. Sharpe, G.J.: Linear stability of pathological detonations. J. Fluid Mech. 401, 311–338 (1999)

    Google Scholar 

  141. Sharpe, G.J.: Numerical simulations of pulsating detonations: I. nonlinear stability of steady detonations. Combust. Theor. Model. 4, 557–574 (2000)

    Google Scholar 

  142. Sharpe, G.J.: Transverse waves in numerical simulations of cellular detonations. J. Fluid Mech. 447, 31–51 (2001)

    Google Scholar 

  143. Sharpe, G.J., Falle, S.A.E.G.: One-dimensional numerical simulations of idealized detonations. Proc. R. Soc. Lond. A 455, 1203–1214 (1999)

    Google Scholar 

  144. Sharpe, G.J., Falle, S.A.E.G.: One-dimensional nonlinear stability of pathological detonations. J. Fluid Mech. 414, 339–366 (2000)

    Google Scholar 

  145. Sharpe, G.J., Falle, S.A.E.G.: Two-dimensional numerical simulations of idealized detonations. Proc. R. Soc. Lond. A 456, 2081–2100 (2000)

    Google Scholar 

  146. Sharpe, G.J., Quirk, J.J.: Nonlinear cellular dynamics of the idealized detonation model: Regular cells. Combust. Theor. Model. 12(1), 1–21 (2008)

    Google Scholar 

  147. Sharpe, G.J., Radulescu, M.I.: Statistical analysis of cellular detonation dynamics from numerical simulations: One-step chemistry. Combust. Theor. Model. 15(6), 691–723 (2011)

    Google Scholar 

  148. Shchelkin, K.I., Troshin, Y.K.: Gasdynamics of Combustion. Mono Book Co., Baltimore (1965)

    Google Scholar 

  149. Shepherd, J.E.: Chemical kinetics of hydrogen-air-diluent mixtures. Prog. Astro. Aeronaut. 106, 263–293 (1986)

    Google Scholar 

  150. Short, M.: An asymptotic derivation of the linear stability of the square-wave detonation using the newtonian limit. Proc. R. Soc. Lond. A 452, 2203–2224 (1996)

    Google Scholar 

  151. Short, M.: A nonlinear evolution equation for pulsating Chapman–Jouguet detonations with chain-branching kinetics. J. Fluid Mech. 430, 381–400 (2001)

    Google Scholar 

  152. Short, M.: Theory and modeling of detonation wave stability: A brief look at the past and toward the future. In: Proceedings of the 20th International Colloquium on the Dynamics of Explosions and Reactive Systems, Montreal (2005)

    Google Scholar 

  153. Short, M., Blythe, P.A.: Structure and stability of weak-heat-release detonations for finite Mach numbers. Proc. R. Soc. Lond. A 458, 1795–1807 (2002)

    Google Scholar 

  154. Short, M., Dold, J.W.: Linear stability of a detonation wave with a model three-step chain-branching reaction. Math. Comput. Model. 24, 115–123 (1996)

    Google Scholar 

  155. Short, M., Quirk, J.J.: On the nonlinear stability and detonability limit of a detonation wave for a model three-step chain-branching reaction. J. Fluid Mech. 339, 89–119 (1997)

    Google Scholar 

  156. Short, M., Sharpe, G.J.: Pulsating instability of detonations with a two-step chain-branching reaction model: Theory and numerics. Combust. Theor. Model. 7, 401–416 (2003)

    Google Scholar 

  157. Short, M., Stewart, D.S.: Cellular detonation stability: A normal mode linear analysis. J. Fluid Mech. 368, 229–262 (1998)

    Google Scholar 

  158. Short, M., Stewart, D.S.: The multi-dimensional stability of weak-heat-release detonations. J. Fluid Mech. 382, 109–135 (1999)

    Google Scholar 

  159. Short, M., Kapila, A.K., Quirk, J.J.: The chemical-gas dynamic mechanisms of pulsating detonation wave instability. Phil. Trans. R. Soc. Lond. A 357, 3621–3637 (1999)

    Google Scholar 

  160. Short, M., Bdzil, J.B., Anguelova, I.I.: Stability of Chapman–Jouguet detonations for a stiffened-gas model of condensed-phase explosives. J. Fluid Mech. 552, 299–309 (2006)

    Google Scholar 

  161. Short, M., Anguelova, I.I., Aslam, T.D., Bdzil, J.B., Henrick, A.K., Sharpe, G.J.: Stability of detonations for an idealized condensed-phase model. J. Fluid Mech. 595, 45–82 (2008)

    Google Scholar 

  162. Sichel, M., Tonello, N.A., Oran, E.S., Jones, D.A.: A two-step kinetics model for numerical simulation of explosions and detonations in H2 − O2 mixtures. Proc. R. Soc. Lond. A 458, 49–82 (2002)

    Google Scholar 

  163. Soloukhin, R.I.: Shock Waves and Detonations in Gases, State Publishing House, Moscow; English Translation, Mono Book Corporation, Baltimore (1966)

    Google Scholar 

  164. Stewart, D.S., Kasimov, A.R.: State of detonation stability theory and its application to propulsion. J. Propul. Power. 22(6), 1230–1244 (2006)

    Google Scholar 

  165. Stewart, D.S., Aslam, T.D., Yao, J.: On the evolution of cellular detonation. Proc. Combust. Inst. 26, 2981–2989 (1996)

    Google Scholar 

  166. Strehlow, R.A., Fernandes, F.D.: Transverse waves in detonations. Combust. Flame 9, 109–119 (1965)

    Google Scholar 

  167. Sturtzer, M.O., Lamoureux, N., Matignon, C., Desbordes, D., Presles, H.N.: On the origin of the double cellular structure of the detonation in gaseous nitromethane and its mixture with oxygen. Shock Waves 14(1–2), 45–51 (2004)

    Google Scholar 

  168. Takai, R., Yoneda, K., Hikita, T.: Study of detonation wave structure. Proc. Combust. Inst. 15, 69–78 (1974)

    Google Scholar 

  169. Takens, F.: Detecting strange attractors in turbulence. Lect. Notes Math. 898, 366–381 (1981)

    Google Scholar 

  170. Taki, S., Fujiwara, T.: Numerical analysis of two-dimensional non-steady detonations. AIAA J. 16, 73–77 (1978)

    Google Scholar 

  171. Taylor, G.I.: The dynamics of the combustion products behind plane and spherical detonation fronts in explosives. Proc. R. Soc. Lond. A 200, 235–247 (1950)

    Google Scholar 

  172. Taylor, B.D., Kasimov, A.R., Stewart, D.S.: Mode selection in weakly unstable two-dimensional detonations. Combust. Theor. Model. 13, 973–992 (2009)

    Google Scholar 

  173. Theiler, J.: Estimating fractal dimension. J. Opt. Soc. Am. A 7, 1055–1073 (1990)

    Google Scholar 

  174. Tieszen, S.R., Sherman, M.P., Benedick, W.B., Shepherd, J.E., Knystautas, R., Lee, J.H.S.: Detonation cell size measurements in hydrogen-air- steam mixtures. Prog. Astronaut. Aeronaut. 106, 205–219 (1986)

    Google Scholar 

  175. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluids Dynamics, 1st edn. Springer, Berlin (1997)

    Google Scholar 

  176. Tsuboi, N., Hayashi, A.K., Matsumoto, Y.: Three-dimensional parallel simulation of cornstarch-oxygen two-phase detonation. Shock Waves 10, 277–285 (2000)

    Google Scholar 

  177. Tsuboi, N., Katoh, S., Hayashi, A.K.: Three-dimensional numerical simulation for hydrogen/air detonation: Rectangular and diagonal structures. Proc. Combust. Inst. 29, 2783–2788 (2002)

    Google Scholar 

  178. Varatharajan, B., Williams, F.A.: Chemical-kinetic descriptions of high-temperature ignition and detonation of acetylene-oxygen-diluent systems. Combust. Flame 124, 624–645 (2001)

    Google Scholar 

  179. Vasil’ev, A.A., Trotsyuk, A.V.: Multiscaled cellular structure of gaseous detonation. In: Proceedings of the 5th International Seminar on Flame Structure, Novosibirsk, Russia (2005)

    Google Scholar 

  180. Vasil’ev, A.A., Gavrilenko, T.P., Topchian, M.E.: On the Chapman-Jouguet surface in multi-headed detonations. Astro. Acta 17, 499–502 (1972)

    Google Scholar 

  181. Vermeer, D.J., Meyer, J.W., Oppenheim, A.K.: Auto-ignition of hydrocarbons behind reflected shock waves. Combust. Flame 18, 327–336 (1972)

    Google Scholar 

  182. Voitsekhovskii, B.V., Mitrofanov, V.V., Topchian, M.E.: Optical studies of transverse detonation waves. Izv. Sibirsk. Otd. Acad. Nauk SSSR 9, 44 (1958)

    Google Scholar 

  183. Von Neumann, J.: Theory of Detonation Wave. John von Neumann, Collected Works, vol. 6. Macmillan, New York (1963)

    Google Scholar 

  184. Voyevodsky, V.V., Soloukhin, R.I.: On the mechanism and explosion limits of hydrogen-oxygen chain self-ignition in shock waves. Proc. Combust. Inst. 10, 279–283 (1965)

    Google Scholar 

  185. Wang, S.P., Anderson, M.H., Oakley, J.G., Corradini, M.L., Bonazza, R.: A thermodynamically consistent and fully conservative treatment of contact discontinuities for compressible multi-component flows. J. Comput. Phys. 195, 528–559 (2004)

    Google Scholar 

  186. Watt, S.D., Sharpe, G.J.: One-dimensional linear stability of curved detonations. Proc. Roy. Soc. Lond. A 460, 2551–2568 (2004)

    Google Scholar 

  187. Watt, S.D., Sharpe, G.J.: Linear and nonlinear dynamics of cylindrically and spherically expanding detonation waves. J. Fluid Mech. 522, 329–356 (2005)

    Google Scholar 

  188. Westbrook, C.K., Urtiew, P.A.: Chemical-kinetic prediction of critical parameters in gaseous detonations. Proc. Combust. Inst. 19, 615–623 (1982)

    Google Scholar 

  189. Williams, D.N., Bauwens, L., Oran, E.S.: Detailed structure and propagation of three-dimensional detonations. Proc. Combust. Inst. 26, 2991–2998 (1997)

    Google Scholar 

  190. Wolf, A., Swift, J.B., Swinney, L.H., Vastano, J.A.: Determining Lyapunov exponent from a time series. Phys. D 16, 285–317 (1985)

    Google Scholar 

  191. Yao, J., Stewart, D.S.: On the dynamics of multi-dimensional detonation. J. Fluid Mech. 309, 225–275 (1996)

    Google Scholar 

  192. Yungster, S., Radhakrishnan, K.: Structure and stability of one-dimensional detonations in ethylene-air mixtures. Shock Waves 14, 61–72 (2005)

    Google Scholar 

  193. Zaidel, R.M.: Stability of detonation waves in gaseous mixtures. Dokl. Akad. Nauk. SSSR. 136, 1142–1145 (1961)

    Google Scholar 

  194. Zel’dovich, Y.B.: On the theory of the propagation of detonation in gaseous systems. Zh. Eksp. Teor. Fiz. 10, 542–568 (1940)

    Google Scholar 

  195. Zel’dovich, Y.B., Ratner, S.B.: Calculation of the detonation velocity in gases. Acta Physciochimica USSR. XIV(5), 587–612 (1941)

    Google Scholar 

  196. Zhang F.: Detonation of gas-particle flow. In: Zhang, F. (ed.) Heterogeneous Detonation, pp. 87–168. Springer, Berlin (2009)

    Google Scholar 

  197. Zhang, F., Lee, J.H.S.: Friction-induced oscillatory behavior of one dimensional detonations. Proc. R. Soc. Lond. A 446, 87–105 (1994)

    Google Scholar 

  198. Zhang, F., Chue, R.S., Frost, D.L., Lee, J.H.S., Thibault, P., Yee, C.: Effects of area change and friction on detonation stability in supersonic ducts. Proc. R. Soc. Lond. A 449(1935), 31–49 (1995)

    Google Scholar 

  199. Zhang, F., Chue, R.S., Lee, J.H.S., Klein, R.: A nonlinear oscillator concept for one-dimensional pulsating detonations. Shock Waves 8, 351–359 (1998)

    Google Scholar 

Download references

Acknowledgements

The authors would like to extend full gratitude to many colleagues, particularly Gary Sharpe, Matei Radulescu, Mark Short, Charles Kiyanda, Andrew Higgins, Ashwani K. Kapila, Nikos Nikiforakis, and John Lee, for their valuable advice, assistance, and numerous fruitful discussions on the field of detonation physics and scientific computing.

This chapter contains figures reprinted from Radulescu et al. (2007), Short and Stewart (1998), Eckett et al. (2000), Austin (2003), Henrick et al. (2006), Sharpe and Radulescu (2011), Voitsekhovskii et al. (1958), Davidenko et al. (2011), Sharpe and Falle (2000), Watt and Sharpe (2004, 2005), Soloukhin (1966), Jiang et al. (2009), Asahara et al. (2010). The authors gratefully acknowledge Matei Radulescu, Mark Short, Joanna Austin, Gary Sharpe, Ann Karagozian, Joseph Powers, Tariq Aslam, Rmy Mvel and Jean-Philippe Dionne for sharing their figures and data in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoi Dick Ng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ng, H.D., Zhang, F. (2012). Detonation Instability. In: Zhang, F. (eds) Shock Waves Science and Technology Library, Vol. 6. Shock Wave Science and Technology Reference Library, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22967-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22967-1_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22966-4

  • Online ISBN: 978-3-642-22967-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics