Skip to main content

From Lattice Models to Extended Continua

  • Conference paper

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 59))

Abstract

The mechanical behavior of cellular structures is dominated by the underlying micro-topology and therefore has to be denoted very complex. For that reason the question of the computational treatment of such structures is not completely cleared yet. One way to do computations for materials with underlying microstructure is to treat them as homogeneous bodies in the framework of extended continuum theories. These theories consist of an extended set of balance equations, extended kinematic strain measures and extended constitutive equations with additional material parameters. Mostly the physical interpretation of those additional material parameters is not demonstrated vividly. So it is very difficult to quantify them by parameter identification based on experimental reference data.

It will be shown how virtual reference data from microscopic computations can be used to determine the extended set of macroscopic material parameters for the linear Cosserat theory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barthold, F.-J., Stein, E.: A continuum mechanical-based formulation of the variational sensitivity analysis in structural optimization. Part I: Analysis. Structural Optimization 11, 29–42 (1996)

    Article  Google Scholar 

  2. Beyer, H.G.: The theory of evolution strategies. Springer, Heidelberg (2001)

    Book  Google Scholar 

  3. Bigoni, D., Drugan, W.J.: Analytical Derivation of Cosserat Moduli via Homogenization of Heterogeneous Elastic Materials. Journal of Applied Mechanics 74, 741–753 (2007)

    Article  MathSciNet  Google Scholar 

  4. Chatzouridou, A., Diebels, S.: Identification of material parameters in extended continuum mechanical models. In: Proceedings in Applied Mathematics and Mechanics (2005), doi:10.1002/pamm.200510224

    Google Scholar 

  5. Cosserat, E., Cosserat, F.: Théorie des corps déformables. A. Hermann et fils, Paris (1909); Theory of deformable bodies, NASA TT F-11 561(1968)

    Google Scholar 

  6. de Borst, R.: Simulation of strain localization: a reappraisal of the Cosserat continuum. Engineering Computations 8, 317–332 (1991)

    Article  Google Scholar 

  7. Diebels, S.: Mikropolare Zweiphasenmodelle: Formulierung auf Basis der Theorie poröser Medien. Bericht Nr. II-4 aus dem Institut für Mechanik (Bauwesen), Universität Stuttgart (2000)

    Google Scholar 

  8. Diebels, S., Ebinger, T., Steeb, H., Düster, A., Rank, E.: Modelling materials with lattice microstructures by a higher order FE2 approach. In: Proceedings of: International Conference on Computational Methods for Coupled Problems in Science and Engineering, Santorini, Greece (2005)

    Google Scholar 

  9. Diebels, S., Steeb, H.: The size effect in foams and it’s theoretical and numerical investigation. Proceedings of the Royal Society London A 458, 1–15 (2002)

    Article  MathSciNet  Google Scholar 

  10. Diebels, S., Steeb, H.: Stress and Couple Stress in Foams. Computational Material Science 28, 714–722 (2003)

    Article  Google Scholar 

  11. Diebels, S., Steeb, H.: Microscopic and Macroscopic Modelling of Foams. In: Proceedings in Applied Mathematics and Mechanics (2003), doi:10.1002/pamm.2003.10.063

    Google Scholar 

  12. Ebinger, T., Steeb, H., Diebels, S.: Modeling and Homogenization of Foams. Numerical Methods in Continuum Mechanics, Žilina, Slowak Republic (2003)

    Google Scholar 

  13. Ebinger, T., Steeb, H., Diebels, S.: Modeling macroscopic extended continua with the aid of numerical homogenization schemes. Computational Material Science 32, 337–347 (2005)

    Article  Google Scholar 

  14. Ehlers, W., Diebels, S., Volk, W.: Deformation and compatibility for elasto-plastic micropolar materials with application to geomechanical problems. Journal de Physique IV France 8 Pr5, 127–134 (1998)

    Article  Google Scholar 

  15. Ehlers, W., Scholz, B.: Lecture Notes in Applied and Computational Mechanics, vol. 28. LNACM, pp. 83–112 (2006)

    Google Scholar 

  16. Ehlers, W., Scholz, B.: An inverse algorithm for the identification and the sensitivity analysis of the parameters governing micropolar elasto-plastic granular material. Archive of Applied Mechanics (2007), doi:10.1007/s00419-007-0162-9

    Google Scholar 

  17. Ehlers, W., Volk, W.: On shear band localization phenomena of liquid-saturated granular elastoplastic porous solid materials accounting for fluid viscosity and micropolar solid rotations. Mechanics of Cohesive-Frictional Materials 2, 301–320 (1997)

    Article  Google Scholar 

  18. Ehlers, W., Volk, W.: On theoretical and numerical methods in the theory of porous media based on polar and non-polar elasto-plastic solid materials. International Journal of Solids and Structures 24, 3486–3506 (1998)

    Google Scholar 

  19. Eringen, A.C.: Microcontinuum field theories. Foundations and solids, vol. I. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  20. Eringen, A.C., Kafadar, C.B.: Polar field theories. In: Eringen, A.C. (ed.) Continuum Mechanics, vol. VI, pp. 1–73. Academic, New York (1976)

    Google Scholar 

  21. Feyel, F.: Multiscale FE2 elastoviscoplastic analysis of composite structures. Computational Material Science 16, 344–354 (1999)

    Article  Google Scholar 

  22. Feyel, F.: Multiscale non linear FE2 analysis of composite structures: Fibre size effects. Journal de Physique IV France 11 Pr5, 195–202 (2001)

    Article  Google Scholar 

  23. Feyel, F., Chaboche, J.L.: FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Computational Methods in Applied Mechanics and Engineering 183, 309–330 (2000)

    Article  MATH  Google Scholar 

  24. Forest, S.: Aufbau und Identifikation von Stoffgleichungen für höhere Kontinua mittels Homogenisierungsmethoden. Technische Mechanik 19, 297–306 (1999)

    Google Scholar 

  25. Geers, M.G.D., Kouznetsova, V., Brekelmans, W.A.M.: Gradient-enhanced computational homogenization for the micro-macro scale transition. Journal de Physique IV France 11 Pr5, 145–152 (2001)

    Article  Google Scholar 

  26. Gibson, L.J., Ashby, M.F.: Cellular solids. Cambridge Solid State Science Series. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  27. Jänicke, R.: Micromorphic Media: Interpretation and homogenization. Saarbrücker Reihe Materialwissenschaft und Werkstofftechnik Band 21 (2010)

    Google Scholar 

  28. Jänicke, R., Diebels, S.: A numerical homogenisation strategy for micromorphic continuua. Nuovo Cimento della Società Italiana di Fisica - C 31, 121–132 (2009)

    Google Scholar 

  29. Jänicke, R., Diebels, S.: Numerical homogenisation of micromorphic continuua. Technische Mechanik 30, 364–373 (2010)

    Google Scholar 

  30. Jänicke, R., Diebels, S., Sehlhorst, H.-G., Düster, A.: Two-scale modelling of micromorphic continua. Continuum Mechanics and Thermodynamics 21, 297–315 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  31. Mahnken, R., Kuhl, E.: Parameter identification of gradient enhanced damage models with the finite element method. European Journal of Mechanics A/Solids 18, 819–835 (1999)

    Article  MATH  Google Scholar 

  32. Mahnken, R., Stein, E.: A unified approach for parameter identification of inelastic material models in the frame of the finite element method. Computational Methods in Applied Mechanics and Engineering 136, 225–258 (1996)

    Article  MATH  Google Scholar 

  33. Mahnken, R., Stein, E., Bischoff, D.: A stabilization procedure by line-search computation for first-order approximation strategies in structural optimization. International Journal for Numerical Methods in Engineering 35, 1015–1029 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  34. Materna, D., Barthold, F.-J.: Variational design sensitivity analysis in the context of structural optimization and configurational mechanics. International Journal of Fracture 147, 133–155 (2007)

    Article  MATH  Google Scholar 

  35. Materna, D., Barthold, F.-J.: On variational sensitivity analysis and configurational mechanics. Computational Mechanics 41, 661–681 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  36. Miehe, C., Koch, A.: Computational micro-to-macro transitions of discretized microstructures undergoing small strains. Archive of Applied Mechanics (2002), doi:10.1007/s00419-002-0212-2

    Google Scholar 

  37. Miehe, C., Schotte, J., Schröder, J.: Computational micro-macro transitions and overall moduli in the analysis of polycrystals at large strains. Computational Material Science 16, 372–382 (1999)

    Article  Google Scholar 

  38. Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity Simulation of texture development in polycrystalline materials. Computational Methods in Applied Mechanics and Engineering 171, 387–418 (1999)

    Article  MATH  Google Scholar 

  39. Neff, P., Jeong, J., Fischle, A.: Stable identification of linear isotropic Cosserat parameters: bounded stiffness in bending and torsion implies conformal invariance of curvature. Acta Mechanica 211, 237–249 (2010)

    Article  MATH  Google Scholar 

  40. Onck, P.R.: Cosserat modeling of cellular solids. Comptes Rendus Mecanique 330, 717–722 (2002)

    Article  MATH  Google Scholar 

  41. Onck, P.R., Andrews, E.W., Gibson, L.J.: Size effects in ductile cellular solids, Part I: modeling. International Journal of Mechanical Sciences 43, 681–699 (2001)

    Article  MATH  Google Scholar 

  42. Rechenberg, I.: Evolutionsstrategie 1994, Frommann-Holzboog (1994)

    Google Scholar 

  43. Schlangen, E., van Mier, J.G.M.: Simple lattice model for numerical simulation of fracture of concrete materials and structures. Materials and Structures 25, 534–542 (1992)

    Article  Google Scholar 

  44. Scholz, B., Ehlers, W.: Sensitivitätsanalyse im Cosserat-Kontinuum. In: Proceedings in Applied Mathematics and Mechanics, vol. 1, pp. 173–174 (2002)

    Google Scholar 

  45. Scholz, B., Ehlers, W.: Inverses Rechnen zur Identifikation der Materialparameter des Cosserat-Kontinuums. In: Proceedings in Applied Mathematics and Mechanics (2003), doi:10.1001/pamm.200310132

    Google Scholar 

  46. Schraad, M.W., Triantafyllidis, N.: Scale effects in media with periodic and nearly periodic microstructures, Part I: Macroscopic properties. Journal of Applied Mechanics 64, 751–762 (1997)

    Article  MATH  Google Scholar 

  47. Steinmann, P.: A micro polar theory of finite deformation and finite rotation multiplicative elasto-plasticity. International Journal of Solids and Structures 31, 1063–1084 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  48. Schwefel, H.P.: Evolution and optimum seeking. In: Sixth-Generation Computer Technology. Wiley Interscience, Hoboken (1995), http://ls11-www.cs.uni-dortmund.de/lehre/wiley/

    Google Scholar 

  49. Tekoǧlu, C., Onck, P.R.: Size effects in the mechanical behaviour of cellular solids. Journal of Material Science 40, 5911–5917 (2005)

    Article  Google Scholar 

  50. Tekoǧlu, C., Onck, P.R.: Size effects in two-dimensional Voronoi foams: A comparison between generalized continuua and discrete models. Journal of the Mechanics and Physics of Solids (2008), doi:10.1016/j.jmps.2008.06.007

    Google Scholar 

  51. Volk, W.: Untersuchung des Lokalisierungsverhaltens mikropolarer porser Medien mit Hilfe der Cosserat-Theorie. Bericht Nr. II-2 aus dem Institut fr Mechanik (Bauwesen), Universität Stuttgart (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Diebels, S., Scharding, D. (2011). From Lattice Models to Extended Continua. In: Markert, B. (eds) Advances in Extended and Multifield Theories for Continua. Lecture Notes in Applied and Computational Mechanics, vol 59. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22738-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22738-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22737-0

  • Online ISBN: 978-3-642-22738-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics