Skip to main content

Lacunarity Analysis of Protein Sequences Reveal Fractal Like Behavior of Amino Acid Distributions

  • Conference paper
Advances in Computing and Communications (ACC 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 190))

Included in the following conference series:

  • 1742 Accesses

Abstract

This paper reports the use of lacunarity analysis of protein sequences as a new method to analyze the distribution of amino acids in a protein sequence. One of the key results is that distribution of hydrophobic amino acids in a protein sequence exhibit fractal like behavior. It is found that lacunarity plots of distribution of hydrophobic amino acids follow similar patterns for a given protein sequence as well as for amino acid sequences that are extracted from the given protein sequence as prefixes with length reduced by half from the original sequence length. Another interesting result is that using the lacunarity values of chaos game representations of amino acid sequences, we can prove the non-random nature of protein sequences. Lacunarity values also help us to classify a set of true and random protein sequences. These two findings affirm lacunarity analysis as a novel and promising bio-sequence analysis method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mandelbrot, B.: The Fractal Geometry of Nature. Freeman, New York (1983)

    MATH  Google Scholar 

  2. Li-Qian, Z., Zu-Guo, Y., Ji-Qing, D., Vo, A., Sgun-Chao, L.: A Fractal Method to Distinguish Coding and Non-coding Sequences in a Complete Genome Based on a Number Sequence Representation. J. Theor. Biol. 232, 559–567 (2005)

    Article  MathSciNet  Google Scholar 

  3. Peng, C.K., Buldyrev, S.V., Goldberger, A.L., Havlin, S., Sciortino, F., Simons, M., Stanley, H.E.: Long-Range Correlations in Nucleotide Sequences. Nature 356, 168–170 (1992)

    Article  Google Scholar 

  4. Garte, S.: Fractal Properties of Human Genome. J. Theor. Biol. 230, 251–260 (2004)

    Article  MathSciNet  Google Scholar 

  5. Zn-Guo, Y., Anh, V., Zhi-Min, G., Shun-Chao, L.: Fractals in DNA Sequence Analysis. Chinese Phys. 11, 1313 (2002)

    Article  Google Scholar 

  6. Plotnick, R.E., Gardner, R.H., Hargrove, W.W., Prestegaard, K., Perlmutter, M.: Lacunarity Analysis: A General Technique for the Analysis of Spatial Patterns. Phys. Rev. E. 53, 5461–5468 (1996)

    Article  Google Scholar 

  7. Allain, C., Cloitre, M.: Characterizing the Lacunarity of Random and Deterministic Fractal Sets. Phys. Rev. A. 44, 3552–3558 (1991)

    Article  MathSciNet  Google Scholar 

  8. Plotnick, R.E., Gardner, R.H., O’Neill, R.V.: Lacunarity Indices as Measures of Landscape Texture. Landscape Eco. 8, 201–211 (1993)

    Article  Google Scholar 

  9. McIntyre, N.E., Wiens, J.A.: A Novel Use of the Lacunarity Index to Discern Landscape Function. Landscape Eco. 15, 313–321 (2000)

    Article  Google Scholar 

  10. Gopakumar, G., Achuthsankar, N.S.: Fractality of Numeric and Symbolic Sequences. IEEE Potentials 29, 36–39 (2010)

    Google Scholar 

  11. Roya, A., Perfecta, E., Dunnea, W.M., Odlingb, N., Kim, J.: Lacunarity Analysis of Fracture Networks: Evidence for Scale-Dependent Clustering. J. Struct. Geol. 32, 1444–1449 (2010)

    Article  Google Scholar 

  12. Gilmore, S., Hofmann-Wellenhof, R., Muir, J., Soyer, H.P.: Lacunarity Analysis: A Promising Method for the Automated Assessment of Melanocytic Naevi and Melanoma. PLoS One 4, e7449 (2009)

    Article  Google Scholar 

  13. Katti, M.V., Sami-Subbu, R., Ranjekar, P.K., Gupta, V.S.: Amino Acid Repeat Patterns in Protein Sequences: Their Diversity and Structural-Functional Implications. Prot. Science. 9, 1203–1209 (2000)

    Article  Google Scholar 

  14. Roy, S., Martinez, D., Platero, H., Lane, T., Werner-Washburne, M.: Exploiting Amino Acid Composition for Predicting Protein-Protein Interactions. PLoS ONE 4, e7813 (2009)

    Article  Google Scholar 

  15. Jeffrey, H.J.: Chaos Game Representation of Gene Structure. Nucleic Acids Res. 18, 2163–2170 (1990)

    Article  Google Scholar 

  16. Gilmore, S., Hofmann-Wellenhof, R., Muir, J., Soyer, H.P.: Lacunarity Analysis: A Promising Method for the Automated Assessment of Melanocytic Naevi and Melanoma. PLoS One 4, e7449 (2009)

    Article  Google Scholar 

  17. Benson, D.A., Boguski, M.S., Lipman, D.J., Ostell, J., Francis Ouellette, B.F.: Lacunarity Analysis: A Promising Method for the Automated Assessment of Melanocytic Naevi and Melanoma. PLoS One 4, e7449 (2009)

    Article  Google Scholar 

  18. The Universal Protein Resource, http://www.uniprot.org/

  19. Nair, S.A., Nair, V.V.: K, S.A., Kant, K., Dey, A.: Bio-sequence Signatures using Chaos Game Representation. In: Bioinformatics: Applications in Life and Environmental Sciences, Capital Publishing Company, New Delhi (2008)

    Google Scholar 

  20. Otaki, J.M., Tsutsumi, M., Gotoh, T., Yamamoto, H.: Secondary Structure Characterization Based on Amino Acid Composition and Availability in Proteins. J. Chem. Inf. Model. 50, 690–700 (2010)

    Article  Google Scholar 

  21. ExPASy Proteomics Server, http://expasy.org/tools/randseq.html

  22. Ding, Y.S., Zhang, T.L., Chou, K.C.: Prediction of Protein Structure Classes with Pseudo Amino Acid Composition and Fuzzy Support Vector Machine Network. Protein Pept. Lett. 14, 811–815 (2007)

    Article  Google Scholar 

  23. Lin, H., Wang, H., Ding, H., Chen, Y., Li, Q.: Prediction of Subcellular Localization of Apoptosis Protein Using Chous Pseudo Amino Acid Composition. Acta Biotheoritica 57, 321–330 (2009)

    Article  Google Scholar 

  24. Wang, W., Geng, X.B., Dou, Y., Liu, T., Zheng, X.: Predicting Protein Subcellular Localization by Pseudo Amino Acid Composition with a Segment-Weighted and Features-Combined Approach. Protein Pept. Lett. (to be appeared, 2011)

    Google Scholar 

  25. Argos, P., Palau, J.: Amino Acid Distribution in Protein Secondary Structures. Int. Jour. Peptide and Prot. Research. 19, 380–393 (1982)

    Article  Google Scholar 

  26. Yu, Z.G., Anh, V., Lau, K.S.: Chaos Game Representation of Protein Sequences Vased on the Detailed HP Model and Their Multifractal and Correlation Analyses. J. Theor. Biol. 226, 341–348 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gopakumar, G., Nair, A.S. (2011). Lacunarity Analysis of Protein Sequences Reveal Fractal Like Behavior of Amino Acid Distributions. In: Abraham, A., Lloret Mauri, J., Buford, J.F., Suzuki, J., Thampi, S.M. (eds) Advances in Computing and Communications. ACC 2011. Communications in Computer and Information Science, vol 190. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22709-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22709-7_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22708-0

  • Online ISBN: 978-3-642-22709-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics