Skip to main content

Primary Dupuytren’s Disease Cell Interactions with the Extra-cellular Environment: A Link to Disease Progression?

  • Chapter
  • First Online:
Dupuytren’s Disease and Related Hyperproliferative Disorders

Abstract

Comparative gene expression analyses of Dupuytren’s disease tissues and unaffected palmar fascia have consistently identified large numbers of gene transcripts that encode extra-cellular matrix molecules. The relevance of a modified extra-cellular matrix to Dupuytren’s disease progression is unclear. In this study, we have tested two hypotheses: (1) that a modified extra-cellular matrix facilitates Dupuytren’s disease cell migration and (2) that Dupuytren’s disease cells modify their extra-cellular matrix to induce adjacent cells to take on disease cell characteristics. Our data suggest that transforming growth factor β1, periostin and a disintegrin and metalloprotease 12, molecules associated with the extra-cellular matrix and upregulated in Dupuytren’s disease, either inhibit or have no discernable effect on three-dimensional migration of primary Dupuytren’s disease cells relative to cells from phenotypically unaffected palmar fascia. In contrast, a collagen substrate conditioned by primary Dupuytren’s disease cells, but not patient-matched control cells, induces rapid β-catenin accumulation in cells from phenotypically unaffected palmar fascia. As upregulated cytoplasmic β-catenin is one of several characteristics that distinguish DD cells from cells of the adjacent palmar fascia, these data support the hypothesis that a modified extra-cellular matrix promotes Dupuytren’s disease progression by inducing fibroblasts resident in the palmar fascia to take on a disease cell phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amini Nik S, Ebrahim RP, Van Dam K, Cassiman JJ, Tejpar S (2007) TGF-beta modulates beta-Catenin stability and signaling in mesenchymal proliferations. Exp Cell Res 313(13):2887–2895

    Article  PubMed  CAS  Google Scholar 

  • Badalamente MA, Sampson SP, Hurst LC, Dowd A, Miyasaka K (1996) The role of transforming growth factor beta in Dupuytren’s disease. J Hand Surg Am 21(2):210–215

    Article  PubMed  CAS  Google Scholar 

  • Berndt A, Kosmehl H, Mandel U, Gabler U, Luo X, Celeda D, Zardi L, Katenkamp D (1995) TGF beta and bFGF synthesis and localization in Dupuytren’s disease (nodular palmar fibromatosis) relative to cellular activity, myofibroblast phenotype and oncofetal variants of fibronectin. Histochem J 27(12):1014–1020

    PubMed  CAS  Google Scholar 

  • Bisson MA, McGrouther DA, Mudera V, Grobbelaar AO (2003) The different characteristics of Dupuytren’s disease fibroblasts derived from either nodule or cord: expression of alpha-smooth muscle actin and the response to stimulation by TGF-beta1. J Hand Surg Br 28(4):351–356

    Article  PubMed  CAS  Google Scholar 

  • Bunyan AR, Mathur BS (2000) Medium thickness plantar skin graft for the management of digital and palmar flexion contractures. Burns 26(6):575–580

    Article  PubMed  CAS  Google Scholar 

  • Caraci F, Gili E, Calafiore M, Failla M, La Rosa C, Crimi N, Sortino MA, Nicoletti F, Copani A, Vancheri C (2008) TGF-beta1 targets the GSK-3beta/beta-catenin pathway via ERK activation in the transition of human lung fibroblasts into myofibroblasts. Pharmacol Res 57(4):274–282

    Article  PubMed  CAS  Google Scholar 

  • Cheon SS, Wei Q, Gurung A, Youn A, Bright T, Poon R, Whetstone H, Guha A, Alman BA (2006) Beta-catenin regulates wound size and mediates the effect of TGF-beta in cutaneous healing. FASEB J 20(6):692–701

    Article  PubMed  CAS  Google Scholar 

  • Citron N, Hearnden A (2003) Skin tension in the aetiology of Dupuytren’s disease; a prospective trial. J Hand Surg Br 28(6):528–530

    Article  PubMed  CAS  Google Scholar 

  • Evans RB, Dell PC, Fiolkowski P (2002) A clinical report of the effect of mechanical stress on functional results after fasciectomy for Dupuytren’s contracture. J Hand Ther 15(4):331–339

    Article  PubMed  Google Scholar 

  • Goffin JM, Pittet P, Csucs G, Lussi JW, Meister JJ, Hinz B (2006) Focal adhesion size controls tension-dependent recruitment of alpha-smooth muscle actin to stress fibers. J Cell Biol 172(2):259–268

    Article  PubMed  CAS  Google Scholar 

  • Gupta R, Allen F, Tan V, Bozentka DJ, Bora FW, Osterman AL (1998) The effect of shear stress on fibroblasts derived from Dupuytren’s tissue and normal palmar fascia. J Hand Surg Am 23(5):945–950

    Article  PubMed  CAS  Google Scholar 

  • Hinz B (2009) Tissue stiffness, latent TGF-beta1 activation, and mechanical signal transduction: implications for the pathogenesis and treatment of fibrosis. Curr Rheumatol Rep 11(2):120–126

    Article  PubMed  CAS  Google Scholar 

  • Hinz B, Dugina V, Ballestrem C, Wehrle-Haller B, Chaponnier C (2003) Alpha-smooth muscle actin is crucial for focal adhesion maturation in myofibroblasts. Mol Biol Cell 14(6):2508–2519

    Article  PubMed  CAS  Google Scholar 

  • Howard JC, Varallo VM, Ross DC, Roth JH, Faber KJ, Alman B, Gan BS (2003) Elevated levels of beta-catenin and fibronectin in three-dimensional collagen cultures of Dupuytren’s disease cells are regulated by tension in vitro. BMC Musculoskelet Disord 4:16

    Article  PubMed  Google Scholar 

  • Howard JC, Varallo VM, Ross DC, Faber KJ, Roth JH, Seney S, Gan BS (2004) Wound healing-associated proteins Hsp47 and fibronectin are elevated in Dupuytren’s contracture. J Surg Res 117(2):232–238

    Article  PubMed  CAS  Google Scholar 

  • Hueston JT (1992) Regression of Dupuytren’s contracture. J Hand Surg Br 17(4):453–457

    Article  PubMed  CAS  Google Scholar 

  • Hurst LC, Badalamente MA, Makowski J (1986) The pathobiology of Dupuytren’s contracture: effects of prostaglandins on myofibroblasts. J Hand Surg Am 11(1):18–23

    PubMed  CAS  Google Scholar 

  • Iwasaki H, Muller H, Stutte HJ, Brennscheidt U (1984) Palmar fibromatosis (Dupuytren’s contracture). Ultrastructural and enzyme histochemical studies of 43 cases. Virchows Arch A Pathol Anat Histopathol 405(1):41–53

    Article  PubMed  CAS  Google Scholar 

  • Luck JV (1959) Dupuytren’s contracture; a new concept of the pathogenesis correlated with surgical management. J Bone Joint Surg Am 41(4):635–664

    PubMed  Google Scholar 

  • Qian A, Meals RA, Rajfer J, Gonzalez-Cadavid NF (2004) Comparison of gene expression profiles between Peyronie’s disease and Dupuytren’s contracture. Urology 64(2):399–404

    Article  PubMed  CAS  Google Scholar 

  • Rajesh KR, Rex C, Mehdi H, Martin C, Fahmy NR (2000) Severe Dupuytren’s contracture of the proximal interphalangeal joint: treatment by two-stage technique. J Hand Surg Br 25(5):442–444

    PubMed  CAS  Google Scholar 

  • Rayan GM, Tomasek JJ (1994) Generation of contractile force by cultured Dupuytren’s disease and normal palmar fibroblasts. Tissue Cell 26(5):747–756

    Article  PubMed  CAS  Google Scholar 

  • Rayan GM, Parizi M, Tomasek JJ (1996) Pharmacologic regulation of Dupuytren’s fibroblast contraction in vitro. J Hand Surg Am 21(6):1065–1070

    Article  PubMed  CAS  Google Scholar 

  • Rehman S, Salway F, Stanley JK, Ollier WE, Day P, Bayat A (2008) Molecular phenotypic descriptors of Dupuytren’s disease defined using informatics analysis of the transcriptome. J Hand Surg Am 33(3):359–372

    Article  PubMed  Google Scholar 

  • Shih B, Wijeratne D, Armstrong DJ, Lindau T, Day P, Bayat A (2009) Identification of biomarkers in Dupuytren’s disease by comparative analysis of fibroblasts versus tissue biopsies in disease-specific phenotypes. J Hand Surg Am 34(1):124–136

    Article  PubMed  Google Scholar 

  • Thampatty BP, Wang JH (2007) A new approach to study fibroblast migration. Cell Motil Cytoskeleton 64(1):1–5

    Article  PubMed  CAS  Google Scholar 

  • Tomasek J, Rayan GM (1995) Correlation of alpha-smooth muscle actin expression and contraction in Dupuytren’s disease fibroblasts. J Hand Surg Am 20(3):450–455

    Article  PubMed  CAS  Google Scholar 

  • Tomasek JJ, Schultz RJ, Episalla CW, Newman SA (1986) The cytoskeleton and extracellular matrix of the Dupuytren’s disease “myofibroblast”: an immunofluorescence study of a nonmuscle cell type. J Hand Surg Am 11(3):365–371

    PubMed  CAS  Google Scholar 

  • Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3(5):349–363

    Article  PubMed  CAS  Google Scholar 

  • Vi L, Feng L, Zhu RD, Wu Y, Satish L, Gan BS, O’Gorman DB (2009a) Periostin differentially induces proliferation, contraction and apoptosis of primary Dupuytren’s disease and adjacent palmar fascia cells. Exp Cell Res 315(20):3574–3586

    Article  PubMed  CAS  Google Scholar 

  • Vi L, Gan BS, O’Gorman DB (2009b) The potential roles of cell migration and extra-cellular matrix interactions in Dupuytren’s disease progression and recurrence. Med Hypotheses 74(3):510–512

    Article  PubMed  Google Scholar 

  • Vi L, Njarlangattil A, Wu Y, Gan BS, O’Gorman DB (2009c) Type-1 collagen differentially alters beta-catenin accumulation in primary Dupuytren’s Disease cord and adjacent palmar fascia cells. BMC Musculoskelet Disord 10(1):72

    Article  PubMed  Google Scholar 

  • Wipff PJ, Hinz B (2009) Myofibroblasts work best under stress. J Bodyw Mov Ther 13(2):121–127

    Article  PubMed  Google Scholar 

  • Wipff PJ, Rifkin DB, Meister JJ, Hinz B (2007) Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J Cell Biol 179(6):1311–1323

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Ms Karen Nygard at the Biotron of the University of Western Ontario for her expert assistance with stereomicroscopy. We also acknowledge the Canadian Institutes of Health Research and The Lawson Health Research Institute Internal Research Fund for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Vi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vi, L., Wu, Y., Gan, B.S., O’Gorman, D.B. (2012). Primary Dupuytren’s Disease Cell Interactions with the Extra-cellular Environment: A Link to Disease Progression?. In: Eaton, C., Seegenschmiedt, M., Bayat, A., Gabbiani, G., Werker, P., Wach, W. (eds) Dupuytren’s Disease and Related Hyperproliferative Disorders. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22697-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22697-7_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22696-0

  • Online ISBN: 978-3-642-22697-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics