Skip to main content

Modeling Mental Workload Using EEG Features for Intelligent Systems

  • Conference paper
User Modeling, Adaption and Personalization (UMAP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6787))

Abstract

Endowing systems with abilities to assess a user’s mental state in an operational environment could be useful to improve communication and interaction methods. In this work we seek to model user mental workload using spectral features extracted from electroencephalography (EEG) data. In particular, data were gathered from 17 participants who performed different cognitive tasks. We also explore the application of our model in a non laboratory context by analyzing the behavior of our model in an educational context. Our findings have implications for intelligent tutoring systems seeking to continuously assess and adapt to a learner’s state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berka, C., Levendowski, D.J., Cvetinovic, M.M., et al.: Real-Time Analysis of EEG Indexes of Alertness, Cognition, and Memory Acquired With a Wireless EEG Headset. International Journal of Human-Computer Interaction 17, 151–170 (2004)

    Article  Google Scholar 

  2. Gevins, A., Smith, M.E.: Assessing fitness-for-duty and predicting performance with cognitive neurophysiologic measures. In: Caldwell, J.A., Wesensten, N.J. (eds.) Biomonitoring for Physiological and Cognitive Performance during Military Operations. Proceedings of SPIE, vol. 5797, 18, pp. 127–138 (2005)

    Google Scholar 

  3. Murata, A.: An Attempt to Evaluate Mental Workload Using Wavelet Transform of EEG. Human Factors: The Journal of the Human Factors and Ergonomics Society 47, 498–508 (2005)

    Article  Google Scholar 

  4. Smith, M.E., Gevins, A.: Neurophysiologic monitoring of mental workload and fatigue during operation of a flight simulator. In: Caldwell, J.A., Wesensten, N.J. (eds.) Proceedings of SPIE Defense and Security Symposium, Biomonitoring for Physiological and Cognitive Performance during Military Operations, pp. 116–126. SPIE, Orlando (2005)

    Chapter  Google Scholar 

  5. Wilson, G.: Operator functional state assessment for adaptive automation implementation. In: Caldwell, J.A., Wesensten, N.J. (eds.) Proceedings of SPIE Defense and Security Symposium, Biomonitoring for Physiological and Cognitive Performance during Military Operations, pp. 100–104. SPIE, Orlando (2005)

    Chapter  Google Scholar 

  6. Parasuraman, R.: Neuroergonomics: the brain at work. Oxford University Press, New York (2005)

    Google Scholar 

  7. Pope, A.T., Bogart, E.H., Bartolome, D.S.: Biocybernetic system evaluates indices of operator engagement in automated task. Biological Psychology 40, 187–195 (1995)

    Article  Google Scholar 

  8. Prinzel, L.J., Freeman, F.G., Scerbo, M.W.: A Closed-Loop System for Examining Psychophysiological Measures for Adaptive Task Allocation. International Journal of Aviation Psychology 10, 393–410 (2000)

    Article  Google Scholar 

  9. Sterman, M.B., Kaiser, D.A., Mann, C.A., et al.: Application of Quantitative EEG Analysis to Workload Assessment in an Advanced Aircraft Simulator. In: Human Factors and Ergonomics, Seattle, Washington, USA, pp. 118–121 (1993)

    Google Scholar 

  10. Hancock, P.A., Warm, J.S.: A Dynamic Model of Stress and Sustained Attention. Human Factors and Ergonomics Society 31, 519–537 (1989)

    Article  Google Scholar 

  11. Arroyo, I., Woolf, B.: Inferring learning and attitudes from a Bayesian Network of log file data. In: Proceeding of the 2005 Conference on Artificial Intelligence in Education: Supporting Learning through Intelligent and Socially Informed Technology, pp. 33–40. IOS Press, Amsterdam (2005)

    Google Scholar 

  12. Baker, R.S., Corbett, A.T., Koedinger, K.R.: Detecting Student Misuse of Intelligent Tutoring Systems. In: Lester, J.C., Vicari, R.M., Paraguaçu, F. (eds.) ITS 2004. LNCS, vol. 3220, pp. 531–540. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Beck, J.E.: Engagement tracing: using response times to model student disengagement. In: Proceeding of the 2005 Conference on Artificial Intelligence in Education: Supporting Learning through Intelligent and Socially Informed Technology, pp. 88–95. IOS Press, Amsterdam (2005)

    Google Scholar 

  14. Johns, J., Woolf, B.: A dynamic mixture model to detect student motivation and proficiency. In: Proceedings of the 21st National Conference on Artificial Intelligence, vol. 1, pp. 163–168. AAAI Press, Boston (2006)

    Google Scholar 

  15. Arroyo, I., Cooper, D.G., Burleson, W., et al.: Emotion Sensors Go To School. In: Proceeding of the 2009 Conference on Artificial Intelligence in Education: Building Learning Systems that Care: From Knowledge Representation to Affective Modelling, pp. 17–24. IOS Press, Amsterdam (2009)

    Google Scholar 

  16. D’Mello, S., Craig, S., Witherspoon, A., et al.: Automatic detection of learner’s affect from conversational cues. User Modeling and User-Adapted Interaction 18, 45–80 (2008)

    Article  Google Scholar 

  17. Forbes-Riley, K., Rotaru, M., Litman, D.J.: The relative impact of student affect on performance models in a spoken dialogue tutoring system. User Modeling and User-Adapted Interaction 18, 11–43 (2008)

    Article  Google Scholar 

  18. Stevens, R., Galloway, T., Berka, C.: Integrating EEG Models of Cognitive Load with Machine Learning Models of Scientific Problem Solving. In: Schmorrow, D., Stanney, K., Reeves, L. (eds.) Augmented Cognition: Past, Present and Future, pp. 55–65. Strategic Analysis, Inc., Arlington (2006)

    Google Scholar 

  19. Wilson, G.F.: An analysis of mental workload in pilots during flight using multiple sychophysiological measures. Int. J. Aviat. Psychol. 12, 3–18 (2004)

    Article  Google Scholar 

  20. Gevins, A., Smith, M.E.: Neurophysiological measures of cognitive workload during human-computer interaction. Theoretical Issues in Ergonomics Science 4, 113–131 (2003)

    Article  Google Scholar 

  21. Kohlmorgen, J., Dornhege, G., Braun, M., et al.: Improving human performance in a real operating environment through real-time mental workload detection. In: Toward Brain-Computer Interfacing, pp. 409–422. MIT Press, Cambridge (2007)

    Google Scholar 

  22. Heger, D., Putze, F., Schultz, T.: Online Workload Recognition from EEG Data during Cognitive Tests and Human-Machine Interaction. In: Dillmann, R., Beyerer, J., Hanebeck, U.D., Schultz, T. (eds.) KI 2010. LNCS, vol. 6359, pp. 410–417. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Honal, M., Schultz., T.: Determine task demand from brain activity. In: 3rd International Conference on Bio-inspired Systems and Signal Processing (2008)

    Google Scholar 

  24. Berka, C., Levendowski, D.J., Lumicao, M.N., et al.: EEG Correlates of Task Engagement and Mental Workload in Vigilance, Learning, and Memory Tasks. Aviation, Space, and Environmental Medicine 78, B231–B244 (2007)

    Google Scholar 

  25. Stevens, R., Galloway, T., Berka, C.: EEG-Related Changes in Cognitive Workload, Engagement and Distraction as Students Acquire Problem Solving Skills. In: Conati, C., McCoy, K., Paliouras, G. (eds.) UM 2007. LNCS (LNAI), vol. 4511, pp. 187–196. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  26. Stevens, R.H., Galloway, T., Berka, C.: Integrating innovative neuro-educational technologies (I-Net) into K-12 science classrooms. In: Proceedings of the 3rd International Conference on Foundations of Augmented Cognition, Beijing, China, pp. 47–56 (2007)

    Google Scholar 

  27. Hart, S.G., Staveland, L.E.: Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. In: Hancock, P.A., Meshkati, N. (eds.) Human Mental Workload, pp. 139–183. North-Holland, Amsterdam (1988)

    Chapter  Google Scholar 

  28. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chaouachi, M., Jraidi, I., Frasson, C. (2011). Modeling Mental Workload Using EEG Features for Intelligent Systems. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds) User Modeling, Adaption and Personalization. UMAP 2011. Lecture Notes in Computer Science, vol 6787. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22362-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22362-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22361-7

  • Online ISBN: 978-3-642-22362-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics