Skip to main content

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 413))

Abstract

In this chapter,we present a summary of nanorobotic manipulations under various microscopes and their nanobioscience applications. Until now, nanomanipulation is mainly applied to the scientific exploration of mesoscopic phenomena and the construction of prototype nanodevices. Recently, the evaluation of bio-samples has gotten much attention for nanobio applications in nano-biotechnology. Singlecell analysis gets a lot of attention because of its potential for revealing unknown biological aspects of individual cells. Nanomanipulation techniques are one of the promising ways to develop nanobio-applications on the single-cell level for drug delivery, nano-therapy, nano-surgery, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Du, E., Cui, H., Zhu, Z.: Review of nanomanipulators for nanomanufacturing. Int. J. Nanomanufacturing 1, 83–104 (2006)

    Article  Google Scholar 

  2. Craighead, H.G.: Nanoelectromechanical systems. Science 290, 1532–1535 (2000)

    Article  Google Scholar 

  3. Staples, M., Daniel, K., Sima, M.J., Langer, R.: Applications of micro- and nano-electromechanical devices to drug delivery. Pharmaceutical Research 23, 847–863 (2006)

    Article  Google Scholar 

  4. Leary, S.P., Liu, C.Y., Apuzzo, M.L.J.: Toward the emergence of nanoneurosurgery: Part III - Nanomedicine: Targeted nanotherapy, nanosurgery, and progress toward the realization of nanoneurosurgery. Neurosurgery 58, 1009–1026 (2006)

    Article  Google Scholar 

  5. Feynman, R.P.: There’s plenty of room at the bottom. Caltech’s Engineering and Science 23, 22–36 (1960)

    Google Scholar 

  6. Lewis, A., Taha, H., Strinkovski, A., Manevitch, A., Khatchatouriants, A., Dekhter, R., Ammann, E.: Near-field optics: From subwavelength illumination to nanometric shadowing. Nature Biotechnol. 21, 1378–1386 (2003)

    Article  Google Scholar 

  7. Hell, S.W.: Far-field optical nanoscopy. Science 316, 1153–1158 (2007)

    Article  Google Scholar 

  8. Eigler, D.M., Schweizer, E.K.: Positioning single atoms with a scanning tunneling microscope. Nature 344, 524–526 (1990)

    Article  Google Scholar 

  9. Hertel, T., Martel, R., Avouris, P.: Manipulation of individual carbon nanotubes and their interaction with surfaces. J. Phys. Chem. B 102, 910–915 (1998)

    Article  Google Scholar 

  10. Li, G., Xi, N., Chen, H., Poneroy, C., Prokos, M.: Videolized atomic force microscopy for interactive nanomanipulation and nanoassembly. IEEE Trans. Nanotechnol. 4, 605–615 (2005)

    Article  Google Scholar 

  11. Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelley, T.F., Ruoff, R.S.: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637–640 (2000)

    Article  Google Scholar 

  12. Kizuka, T., Yamada, K., Deguchi, S., Naruse, M., Tanaka, N.: Cross-sectional time resolved high-resolution transmission electron microscopy of atomic-scale contact and noncontact-type scannings on gold surfaces. Phys. Rev. B 55, 7398–7401 (1997)

    Article  Google Scholar 

  13. Nakajima, M., Arai, F., Fukuda, T.: In situ measurement of Young’s modulus of carbon nanotube inside TEM through hybrid nanorobotic manipulation system. IEEE Trans. Nanotechnol. 5(3), 243–248 (2006)

    Article  Google Scholar 

  14. Fukuda, T., Arai, F., Dong, L.X.: Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations. Proc. IEEE 91, 1803–1818 (2003)

    Article  Google Scholar 

  15. Sedgwick, H., Caron, F., Monaghan, P.B., Kolch, W., Cooper, J.M.: Lab-on-a-chip technologies for proteomic analysis from isolated cells. J. R. Soc. Interface 5, S123–S130 (2008)

    Article  Google Scholar 

  16. Ferrell, J.E., Machleder, E.M.: The biochemical basis of an all-or-none cell fate switch in xenopus oocytes. Science 280, 895–898 (1998)

    Article  Google Scholar 

  17. Avery, S.V.: Microbial cell individuality and the underlying sources of heterogeneity. Nature Reviews: Microbiology 4, 577–587 (2006)

    Article  Google Scholar 

  18. Wilson, J., Hunt, T.: Molecular Biology of the Cell. Garland Science (2002)

    Google Scholar 

  19. Ahmad, M.R., Nakajima, M., Kojima, S., Homma, M., Fukuda, T.: In situ single cell mechanics characterization of yeast cells using nanoneedles inside environmental SEM. IEEE Trans. Nanotechnol. 7, 607–616 (2008)

    Article  Google Scholar 

  20. Ahmad, M.R., Nakajima, M., Kojima, S., Homma, M., Fukuda, T.: The effects of cell sizes, environmental conditions and growth phase son the strength of individual w303 yeast cells inside ESEM. IEEE Trans. Nanobioscience 7, 185–193 (2008)

    Article  Google Scholar 

  21. Ahmad, M.R., Nakajima, M., Kojima, S., Homma, M., Fukuda, T.: Nanoindentation methods to measure viscoelastic properties of single cells using sharp, flat, and buckling tips inside ESEM. IEEE Trans. Nanobioscience 9(1), 12–23 (2010)

    Article  Google Scholar 

  22. Ahmad, M.R., Nakajima, M., Kojima, S., Homma, M., Fukuda, T.: Single cell electrical characterizations using nanoprobe via ESEM-nanomanipulator system. In: Proc. 8th IEEE Int. Conf. on Nanotechnology (IEEE NANO-2009), pp. 589–592 (2009)

    Google Scholar 

  23. Ahmad, M.R., Nakajima, M., Kojima, S., Homma, M., Fukuda, T.: Nanofork and line-patterned substrate for measuring single cells adhesion force inside ESEM. In: Proc. 9th IEEE Int. Conf. on Nanotechnology (IEEE NANO-2010), pp. 356–359 (2010)

    Google Scholar 

  24. Shen, Y., Nakajima, M., Kojima, S., Homma, M., Fukuda, T.: Nano knife fabrication and calibration for single cell cutting inside environmental SEM. In: Proc. 2010 Int. Symposium on Micromechatronics and Human Science (MHS 2010), pp. 316–320 (2010)

    Google Scholar 

  25. Nakajima, M., Ahmad, M.R., Kojima, M., Kojima, S., Homma, M., Fukuda, T.: Local stiffness measurements of C. elegans by buckling nanoprobes inside and environmental SEM. In: Proc. 2009 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2009), pp. 1849–1854 (2009)

    Google Scholar 

  26. Ikeda, S., Arai, F., Fukuda, T., Negoro, M.: An in vitro soft membranous model of individual human cerebral artery reproduced with visco-elastic behaviour. In: Proc. 2004 IEEE Int. Conf. on Robotics and Automation (ICRA 2004), pp. 2511–2516 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fukuda, T., Nakajima, M. (2011). Nanobioscience Based on Nanorobotic Manipulation. In: Eleftheriou, E., Moheimani, S.O.R. (eds) Control Technologies for Emerging Micro and Nanoscale Systems. Lecture Notes in Control and Information Sciences, vol 413. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22173-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22173-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22172-9

  • Online ISBN: 978-3-642-22173-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics