Skip to main content

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 413))

Abstract

This article describes fundamental devices and control techniques that have materialized high-speed atomic force microscopy (AFM) capable of recording dynamic processes of individual biomolecules on video at an imaging rate of 10-25 frames/s, without disturbing their biological functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Viani, M.B., Richter, M., Rief, M., Gaub, H.E., Plaxco, K.W., Cleland, A.N., Hansma, H.G., Hansma, P.K.: Fast imaging and fast force spectroscopy of single biopolymers with a new atomic force microscope designed for small cantilevers. Rev. Sci. Instrum. 70, 4300–4303 (1999)

    Article  Google Scholar 

  2. Fantner, G.E., Schitter, G., Kindt, J.H., Ivanov, T., Ivanova, K., Patel, R., Holten-Andrersen, N., Adams, J., Thurnera, P.J., Rangelowb, I.W., Hansma, P.K.: Components for high-speed atomic force microscopy. Ultramicroscopy 106, 881–887 (2006)

    Article  Google Scholar 

  3. Ando, T., Kodera, N., Takai, E., Maruyama, D., Saito, K., Toda, A.: High-speed atomic force microscope for studying biological macromolecules. Proc. Natl. Acad. Sci. USA 98, 12468–12472 (2001)

    Article  Google Scholar 

  4. Ando, T., Uchihashi, T., Fukuma, T.: High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes. Prog. Surf. Sci. 83, 337–437 (2008)

    Article  Google Scholar 

  5. Ando, T., Uchihashi, T., Kodera, N., Yamamoto, D., Taniguchi, M., Miyagi, A., Yamashita, H.: Review: High-speed atomic force microscopy for observing dynamic biomolecular processes. J. Mol. Recognit. 20, 448–458 (2007)

    Article  Google Scholar 

  6. Ando, T., Uchihashi, T., Kodera, N., Yamamoto, D., Taniguchi, M., Miyagi, A., Yamashita, H.: Invited Review: High-speed AFM and nano-visualization of biomolecular processes. Pflügers Archiv - Eur. J. Physiol. 456, 211–225 (2008)

    Article  Google Scholar 

  7. Hansma, P.K., Schitter, G., Fantner, G.F., Prater, C.: High-speed atomic force microscopy. Science 314, 601–602 (2006)

    Article  Google Scholar 

  8. Walters, D.A., Cleveland, J.P., Thomson, N.H., Hansma, P.K., Wendman, M.A., Gurley, G., Elings, V.: Short cantilevers for atomic force microscopy. Rev. Sci. Instrum. 67, 3583–3590 (1996)

    Article  Google Scholar 

  9. Kitazawa, M., Shiotani, K., Toda, A.: Batch fabrication of sharpened silicon nitride tips. Jpn. J. Appl. Phys. 42, 4844–4847 (2003)

    Article  Google Scholar 

  10. Ando, T., Uchihashi, T., Kodera, N., Miyagi, A., Nakakita, R., Yamashita, H., Matada, K.: High-speed AFM for studying the dynamic behavior of proteins molecules at work. Surf. Sci. Nanotechnol. 3, 384–392 (2005)

    Article  Google Scholar 

  11. Fukuma, T., Okazaki, Y., Kodera, N., Uchihashi, T., Ando, T.: High resonance frequency force microscope scanner using inertia balance support. Appl. Phys. Lett. 92, 243119 (2008)

    Article  Google Scholar 

  12. Kodera, N., Yamashita, H., Ando, T.: Active damping of the scanner for high-speed atomic force microscopy. Rev. Sci. Instrum. 76, 053708 (2005)

    Article  Google Scholar 

  13. Kodera, N., Sakashita, M., Ando, T.: Dynamic proportional-integral-differential controller for high-speed atomic force microscopy. Rev. Sci. Instrum. 77, 083704 (2006)

    Article  Google Scholar 

  14. Schiener, J., Witt, S., Stark, M., Guckenberger, R.: Stabilized atomic force microscopy imaging in liquids using second harmonic of cantilever motion for set-point control. Rev. Sci. Instrum. 75, 2564–2568 (2004)

    Article  Google Scholar 

  15. Henderson, R., Baldwin, J.M., Ceska, T.A., Zemlin, F., Beckmann, E., Downing, K.H.: Model for the structure of bacteriorhodopsin based on high-resolution electron cryomicroscopy. J. Mol. Biol. 213, 899–929 (1990)

    Article  Google Scholar 

  16. Yamashita, H., Voïtchovsky, K., Uchihashi, T., Contera, S.A., Ryan, J.F., Ando, T.: Dynamics of bacteriorhodopsin 2D crystal observed by high-speed atomic force microscopy. J. Struc. Biol. 167, 153–158 (2009)

    Article  Google Scholar 

  17. Jackson, M.B., Sturtevant, J.M.: Phase transitions of the purple membranes of Halobac-terium halobium. Biochemistry 17, 911–915 (1978)

    Article  Google Scholar 

  18. Koltover, I., Raedler, J.O., Salditt, T., Rothschild, K.J., Safinya, C.R.: Phase behavior and interactions of the membrane-protein bacteriorhodopsin. Phys. Rev. Lett. 82, 3184–3187 (1999)

    Article  Google Scholar 

  19. Kimura, Y., Vassylyev, D.G., Miyazawa, A., Kidera, A., Matsushima, M., Mitsuoka, K., Murata, K., Hirai, T., Fujiyoshi, Y.: Surface of bacteriorhodopsin revealed by high-resolution electron crystallography. Nature 389, 206–211 (1997)

    Article  Google Scholar 

  20. Luecke, H., Schobert, B., Richter, H.T., Cartailler, J.P., Lanyi, J.K.: Structure of bacteriorhodopsin at 1.55 Å resolution. J. Mol. Biol. 291, 899–911 (1999)

    Article  Google Scholar 

  21. Lanyi, J.K.: Bacteriorhodopsin. Annu. Rev. Physiol. 66, 665–688 (2004)

    Article  Google Scholar 

  22. Dencher, N.A., Dresselhaus, D., Zaccai, G., Büldt, G.: Structural changes in bacteri-orhodopsin during proton translocation revealed by neutron diffraction. Proc. Natl. Acad. Sci. USA 86, 7876–7879 (1989)

    Article  Google Scholar 

  23. Subramaniam, S., Gerstein, M., Oesterhelt, D., Henderson, R.: Electron diffraction analysis of structural changes in the photocycle of bacteriorhodopsin. EMBO J. 12, 1–8 (1993)

    Google Scholar 

  24. Brown, L.S., Needleman, R., Lanyi, J.K.: Conformational change of the E-F interhelical loop in the M photointermediate of bacteriorhodopsin. J. Mol. Biol. 317, 471–478 (2002)

    Article  Google Scholar 

  25. Sass, H.J., Büld, G., Gessenich, R., Hehn, D., Neff, D., Schlesinger, R., Berendzen, J., Ormos, P.: Structural alterations for proton translocation in the M state of wild-type bacteriorhodopsin. Nature 406, 649–653 (2000)

    Article  Google Scholar 

  26. Subramaniam, S., Henderson, R.: Molecular mechanism of vectorial proton translocation by bacteriorhodopsin. Nature 406, 653–657 (2000)

    Article  Google Scholar 

  27. Shibata, M., Yamashita, H., Uchihashi, T., Kandori, H., Ando, T.: High-speed atomic force microscopy shows dynamic molecular processes in photo-activated bacteriorhodopsin. Nature Nanotech. 5, 208–212 (2010)

    Article  Google Scholar 

  28. Yamamoto, D., Nagura, N., Omote, S., Taniguchi, M., Ando, T.: Streptavidin 2D crystal substrates for visualizing biomolecular processes by atomic force microscopy. Biophys. J. 97, 2358–2367 (2009)

    Article  Google Scholar 

  29. Yamamoto, D., Uchihashi, T., Kodera, N., Ando, T.: Anisotropic diffusion of point defects in two-dimensional crystal of streptavidin observed by high-speed atomic force microscopy. Nanotechnology 19, 0384009 (2008)

    Article  Google Scholar 

  30. Miyagi, A., Tsunaka, Y., Uchihashi, T., Miyanagi, K., Hirose, S., Morikawa, K., Ando, T.: Visualization of intrinsically disordered regions of proteins by high-speed atomic force microscopy. Chem. Phys. Chem. 9, 1859–1866 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ando, T. (2011). Techniques Developed for High-Speed AFM. In: Eleftheriou, E., Moheimani, S.O.R. (eds) Control Technologies for Emerging Micro and Nanoscale Systems. Lecture Notes in Control and Information Sciences, vol 413. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22173-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22173-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22172-9

  • Online ISBN: 978-3-642-22173-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics