Skip to main content

Bioavailability of Anthocyanins

  • Reference work entry
  • First Online:
Book cover Natural Products

Abstract

Anthocyanins are naturally occurring compounds widespread in plant-derived foodstuffs and therefore abundant in our diet. There are evidences regarding the positive association of their intake with healthy biological effects displayed in vivo. This chapter aims to review some concepts regarding anthocyanins’ bioavailability. It summarizes the latest advances on the ingestion, absorption, bioavailability, and biotransformation of these compounds through different approaches. Attention is also given to the role of microbiota in anthocyanin metabolism and bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mazza G, Miniati E (1993) Anthocyanins in fruits, vegetables, and grains. CRC Press, Boca Raton

    Google Scholar 

  2. Markakis P (1982) Stability of anthocyanins in foods. In: Markakis P (ed) Anthocyanins as food colors. Academic, London, pp P163–P180

    Google Scholar 

  3. Mazza GJ (2007) Anthocyanins and heart health. Ann Ist Super Sanita 43:369–374

    CAS  Google Scholar 

  4. Wang LS, Stoner GD (2008) Anthocyanins and their role in cancer prevention. Cancer Lett 269:281–290

    Article  CAS  Google Scholar 

  5. Dell'Agli M, Busciala A, Bosisio E (2004) Vascular effects of wine polyphenols. Cardiovasc Res 63:593–602

    Article  CAS  Google Scholar 

  6. Han KH, Matsumoto A, Shimada K, Sekikawa M, Fukushima M (2007) Effects of anthocyanin-rich purple potato flakes on antioxidant status in F344 rats fed a cholesterol-rich diet. Br J Nutr 98:914–921

    Article  CAS  Google Scholar 

  7. Liu LK, Lee HJ, Shih YW, Chyau CC, Wang CJ (2008) Mulberry anthocyanin extracts inhibit LDL oxidation and macrophage-derived foam cell formation induced by oxidative LDL. J Food Sci 73:H113–H121

    Article  CAS  Google Scholar 

  8. Faria A, Pestana D, Teixeira D, de Freitas V, Mateus N, Calhau C (2010) Blueberry anthocyanins and pyruvic acid adducts: anticancer properties in breast cancer cell lines. Phytother Res 24:1862–1869

    Article  CAS  Google Scholar 

  9. Shin DY, Ryu CH, Lee WS, Kim DC, Kim SH, Hah YS, Lee SJ, Shin SC, Kang HS, Choi YH (2009) Induction of apoptosis and inhibition of invasion in human hepatoma cells by anthocyanins from meoru. Ann N Y Acad Sci 1171:137–148

    Article  CAS  Google Scholar 

  10. Li L, Adams LS, Chen S, Killian C, Ahmed A, Seeram NP (2009) Eugenia jambolana Lam. berry extract inhibits growth and induces apoptosis of human breast cancer but not non-tumorigenic breast cells. J Agric Food Chem 57:826–831

    Article  CAS  Google Scholar 

  11. Matsubara K, Kaneyuki T, Miyake T, Mori M (2005) Antiangiogenic activity of nasunin, an antioxidant anthocyanin, in eggplant peels. J Agric Food Chem 53:6272–6275

    Article  CAS  Google Scholar 

  12. Hammerstone JF, Lazarus SA, Schmitz HH (2000) Procyanidin content and variation in some commonly consumed foods. J Nutr 130:2086S–2092S

    CAS  Google Scholar 

  13. Francis FJ (1989) Food colorants: anthocyanins. Crit Rev Food Sci Nutr 28:273–314

    Article  CAS  Google Scholar 

  14. Andersen OM, Jordheim M (2005) The anthocyanins. In: Andersen OM, Markham KR (eds) Flavonoids: chemistry, biochemistry and applications. CRC Press, Boca Raton, pp 471–552

    Chapter  Google Scholar 

  15. Brouillard R, Delaporte B (1977) Chemistry of anthocyanin pigments. 2. Kinetic and thermodynamic study of proton-transfer, hydration and tautomeric reactions of malvidin 3-glucoside. J Am Chem Soc 99:8461–8468

    Article  CAS  Google Scholar 

  16. Brouillard R, Dubois JE (1977) Mechanism of structural transformations of anthocyanins in acidic media. J Am Chem Soc 99:1359–1364

    Article  CAS  Google Scholar 

  17. Brouillard R, Lang J (1990) The hemiacetal-cis-chalcone equilibrium of malvidin, a natural anthocyanin. Can J Chem - Revue Canadienne De Chimie 68:755–761

    Article  CAS  Google Scholar 

  18. Mazza G, Brouillard R (1990) The mechanism of copigmentation of anthocyanins in aqueous-solutions. Phytochemistry 29:1097–1102

    Article  CAS  Google Scholar 

  19. Davies AJ, Mazza G (1993) Copigmentation of simple and acylated anthocyanins with colorless phenolic-compounds. J Agric Food Chem 41:716–720

    Article  CAS  Google Scholar 

  20. Brouillard R, Dangles O (1994) Anthocyanin molecular-interactions – the first step in the formation of new pigments during wine aging. Food Chem 51:365–371

    Article  CAS  Google Scholar 

  21. Furtado P, Figueiredo P, Dasneves HC, Pina F (1993) Photochemical and thermal-degradation of anthocyanidins. J Photochem Photobiol A Chem 75:113–118

    Article  CAS  Google Scholar 

  22. Neveu V, Perez-Jimenez J, Vos F, Crespy V, du Chaffaut L, Mennen L, Knox C, Eisner R, Cruz J, Wishart D et al (2010) Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. Database (Oxford) 2010:bap024

    Google Scholar 

  23. Scalbert A, Williamson G (2000) Dietary intake and bioavailability of polyphenols. J Nutr 130:2073S–2085S

    CAS  Google Scholar 

  24. Perez-Jimenez J, Fezeu L, Touvier M, Arnault N, Manach C, Hercberg S, Galan P, Scalbert A (2011) Dietary intake of 337 polyphenols in French adults. Am J Clin Nutr 93:1220–1228

    Article  CAS  Google Scholar 

  25. Mazza G, Velioglu YS (1992) Anthocyanins and other phenolic-compounds in fruits of red-fleshed apples. Food Chem 43:113–117

    Article  CAS  Google Scholar 

  26. Clifford MN (2000) Anthocyanins - nature, occurrence and dietary burden. J Sci Food Agric 80:1063–1072

    Article  CAS  Google Scholar 

  27. Perez-Jimenez J, Neveu V, Vos F, Scalbert A (2010) Systematic analysis of the content of 502 polyphenols in 452 foods and beverages: an application of the phenol-explorer database. J Agric Food Chem 58:4959–4969

    Article  CAS  Google Scholar 

  28. He J, Santos-Buelga C, Silva AMS, Mateus N, De Freitas V (2006) Isolation and structural characterization of new anthocyanin-derived yellow pigments in aged red wines. J Agric Food Chem 54:9598–9603

    Article  CAS  Google Scholar 

  29. Oliveira J, de Freitas V, Silva AMS, Mateus N (2007) Reaction between hydroxycinnamic acids and anthocyanin-pyruvic acid adducts yielding new portisins. J Agric Food Chem 55:6349–6356

    Article  CAS  Google Scholar 

  30. Pissarra J, Lourenco S, Gonzalez-Paramas AM, Mateus N, Buelga CS, Silva AMS, De Freitas V (2004) Structural characterization of new malvidin 3-glucoside-catechin aryl/alkyl-linked pigments. J Agric Food Chem 52:5519–5526

    Article  CAS  Google Scholar 

  31. Sousa C, Mateus N, Silva AMS, Gonzalez-Paramas AM, Santos-Buelga C, de Freitas V (2007) Structural and chromatic characterization of a new malvidin 3-glucoside-vanillyl-catechin pigment. Food Chem 102:1344–1351

    Article  CAS  Google Scholar 

  32. Byers JP, Sarver JG (2009) Pharmacokinetic modeling. In: Hacker M, Bachmann K, Messer W (eds) Pharmacology: principles and practice. Academic Press, London, pp 201–277

    Google Scholar 

  33. Faria A, Pestana D, Azevedo J, Martel F, Vd F, Azevedo I, Mateus N, Calhau C (2009) Absorption of anthocyanins through intestinal epithelial cells – putative involvement of GLUT2. Mol Nutr Food Res 53:1430–1437

    Article  CAS  Google Scholar 

  34. McGhie TK, Walton MC (2007) The bioavailability and absorption of anthocyanins: towards a better understanding. Mol Nutr Food Res 51:702–713

    Article  CAS  Google Scholar 

  35. Walle T (2004) Absorption and metabolism of flavonoids. Free Radic Biol Med 36:829–837

    Article  CAS  Google Scholar 

  36. Vanzo A, Terdoslavich M, Brandoni A, Torres AM, Vrhovsek U, Passamonti S (2008) Uptake of grape anthocyanins into the rat kidney and the involvement of bilitranslocase. Mol Nutr Food Res 52:1106–1116

    Article  CAS  Google Scholar 

  37. Wiese S, Gärtner S, Rawel HM, Winterhalter P, Kulling SE (2009) Protein interactions with cyanidin-3-glucoside and its influence on α-amylase activity. J Sci Food Agric 89:33–40

    Article  CAS  Google Scholar 

  38. Matsui T, Ueda T, Oki T, Sugita K, Terahara N, Matsumoto K (2001) α-glucosidase inhibitory action of natural acylated anthocyanins. 1. Survey of natural pigments with potent inhibitory activity. J Agric Food Chem 49:1948–1951

    Article  CAS  Google Scholar 

  39. Walle T, Browning AM, Steed LL, Reed SG, Walle UK (2005) Flavonoid glucosides are hydrolyzed and thus activated in the oral cavity in humans. J Nutr 135:48–52

    CAS  Google Scholar 

  40. Mallery SR, Budendorf DE, Larsen MP, Pei P, Tong M, Holpuch AS, Larsen PE, Stoner GD, Fields HW, Chan KK et al (2011) Effects of human oral mucosal tissue, saliva and oral microflora on intraoral metabolism and bioactivation of black raspberry anthocyanins. Cancer Prev Res 8:1209–1221

    Article  CAS  Google Scholar 

  41. Cao G, Prior RL (1999) Anthocyanins are detected in human plasma after oral administration of an elderberry extract. Clin Chem 45:574–576

    CAS  Google Scholar 

  42. Cao G, Muccitelli HU, Sanchez-Moreno C, Prior RL (2001) Anthocyanins are absorbed in glycated forms in elderly women: a pharmacokinetic study. Am J Clin Nutr 73:920–926

    CAS  Google Scholar 

  43. Milbury PE, Cao G, Prior RL, Blumberg J (2002) Bioavailability of elderberry anthocyanins. Mech Ageing Dev 123:997–1006

    Article  CAS  Google Scholar 

  44. Mulleder U, Murkovic M, Pfannhauser W (2002) Urinary excretion of cyanidin glycosides. J Biochem Biophys Methods 53:61–66

    Article  CAS  Google Scholar 

  45. Piskula MK, Yamakoshi J, Iwai Y (1999) Daidzein and genistein but not their glucosides are absorbed from the rat stomach. FEBS Lett 447:287–291

    Article  CAS  Google Scholar 

  46. Crespy V, Morand C, Besson C, Manach C, Demigne C, Remesy C (2001) Quercetin, but not its glycosides, is absorbed from the rat stomach. J Agric Food Chem 50:618–621

    Article  CAS  Google Scholar 

  47. Strassburg CP, Oldhafer K, Manns MP, Tukey RH (1997) Differential expression of the UGT1A locus in human liver, biliary, and gastric tissue: identification of UGT1A7 and UGT1A10 transcripts in extrahepatic tissue. Mol Pharmacol 52:212–220

    CAS  Google Scholar 

  48. Strassburg CP, Nguyen N, Manns MP, Tukey RH (1998) Polymorphic expression of the UDP-glucuronosyltransferase UGT1A gene locus in human gastric epithelium. Mol Pharmacol 54:647–654

    CAS  Google Scholar 

  49. Harris RM, Picton R, Singh S, Waring RH (2000) Activity of phenolsulfotransferases in the human gastrointestinal tract. Life Sci 67:2051–2057

    Article  CAS  Google Scholar 

  50. Karhunen T, Tilgmann C, Ulmanen I, Julkunen I, Panula P (1994) Distribution of catechol-O-methyltransferase enzyme in rat tissues. J Histochem Cytochem 42:1079–1090

    Article  CAS  Google Scholar 

  51. Déchelotte P, Varrentrapp M, Meyer HJ, Schwenk M (1993) Conjugation of 1-naphthol in human gastric epithelial cells. Gut 34:177–180

    Article  Google Scholar 

  52. Talavera S, Felgines C, Texier O, Besson C, Manach C, Lamaison JL, Remesy C (2004) Anthocyanins are efficiently absorbed from the small intestine in rats. J Nutr 134:2275–2279

    CAS  Google Scholar 

  53. Miyazawa T, Nakagawa K, Kudo M, Muraishi K, Someya K (1999) Direct intestinal absorption of red fruit anthocyanins, cyanidin-3-glucoside and cyanidin-3,5-diglucoside, into rats and humans. J Agric Food Chem 47:1083–1091

    Article  CAS  Google Scholar 

  54. Tsuda T, Horio F, Osawa T (1999) Absorption and metabolism of cyanidin 3-O-b-D-glucoside in rats. FEBS Lett 449:179–182

    Article  CAS  Google Scholar 

  55. Talavera S, Felgines C, Texier O, Besson C, Lamaison JL, Remesy C (2003) Anthocyanins are efficiently absorbed from the stomach in anesthetized rats. J Nutr 133:4178–4182

    CAS  Google Scholar 

  56. McGhie TK, Ainge GD, Barnett LE, Cooney JM, Jensen DJ (2003) Anthocyanin glycosides from berry fruit are absorbed and excreted unmetabolized by both humans and rats. J Agric Food Chem 51:4539–4548

    Article  CAS  Google Scholar 

  57. Ichiyanagi T, Shida Y, Rahman MM, Hatano Y, Konishi T (2005) Extended glucuronidation is another major path of cyanidin 3-O-b-D-glucopyranoside metabolism in rats. J Agric Food Chem 53:7312–7319

    Article  CAS  Google Scholar 

  58. Ichiyanagi T, Rahman MM, Kashiwada Y, Ikeshiro Y, Shida Y, Hatano Y, Matsumoto H, Hirayama M, Tsuda T, Konishi T (2004) Absorption and metabolism of delphinidin 3-O-b-glucopyranoside in rats. Free Radic Biol Med 36:930–937

    Article  CAS  Google Scholar 

  59. Ichiyanagi T, Shida Y, Rahman MM, Hatano Y, Matsumoto H, Hirayama M, Konishi T (2005) Metabolic pathway of cyanidin 3-O-b-D-glucopyranoside in rats. J Agric Food Chem 53:145–150

    Article  CAS  Google Scholar 

  60. Woodward G, Kroon P, Cassidy A, Kay C (2009) Anthocyanin stability and recovery: implications for the analysis of clinical and experimental samples. J Agric Food Chem 57:5271–5278

    Article  CAS  Google Scholar 

  61. Vitaglione P, Donnarumma G, Napolitano A, Galvano F, Gallo A, Scalfi L, Fogliano V (2007) Protocatechuic acid is the major human metabolite of cyanidin-glucosides. J Nutr 137:2043–2048

    CAS  Google Scholar 

  62. Riso P, Visioli F, Gardana C, Grande S, Brusamolino A, Galvano F, Galvano G, Porrini M (2005) Effects of blood orange juice intake on antioxidant bioavailability and on different markers related to oxidative stress. J Agric Food Chem 53:941–947

    Article  CAS  Google Scholar 

  63. Nurmi T, Mursu J, Heinonen M, Nurmi A, Hiltunen R, Voutilainen S (2009) Metabolism of berry anthocyanins to phenolic acids in humans. J Agric Food Chem 57:2274–2281

    Article  CAS  Google Scholar 

  64. Bò CD, Ciappellano S, Klimis-Zacas D, Martini D, Gardana C, Riso P, Porrini M (2009) Anthocyanin absorption, metabolism, and distribution from a wild blueberry-enriched diet (Vaccinium angustifolium) is affected by diet duration in the sprague–dawley rat. J Agric Food Chem 58:2491–2497

    Article  CAS  Google Scholar 

  65. Williamson G, Clifford MN (2010) Colonic metabolites of berry polyphenols: the missing link to biological activity? Br J Nutr 104:S48–S66

    Article  CAS  Google Scholar 

  66. Woodward GM, Needs PW, Kay CD (2011) Anthocyanin-derived phenolic acids form glucuronides following simulated gastrointestinal digestion and microsomal glucuronidation. Mol Nutr Food Res 55:378–386

    Article  CAS  Google Scholar 

  67. Karlsen A, Retterstøl L, Laake P, Paur I, Kjølsrud-Bøhn S, Sandvik L, Blomhoff R (2007) Anthocyanins inhibit nuclear factor-kappaB activation in monocytes and reduce plasma concentrations of Pro-inflammatory mediators in healthy adults. J Nutr 137:1951–1954

    CAS  Google Scholar 

  68. DeFuria J, Bennett G, Strissel KJ, Perfield JW, Milbury PE, Greenberg AS, Obin MS (2009) Dietary blueberry attenuates whole-body insulin resistance in high fat-fed mice by reducing adipocyte death and its inflammatory sequelae. J Nutr 8:1510–1516

    Google Scholar 

  69. Talavera S, Felgines C, Texier O, Besson C, Gil-Izquierdo A, Lamaison JL, Remesy C (2005) Anthocyanin metabolism in rats and their distribution to digestive area, kidney, and brain. J Agric Food Chem 53:3902–3908

    Article  CAS  Google Scholar 

  70. Kalt W, Blumberg JB, McDonald JE, Vinqvist-Tymchuk MR, Fillmore SAE, Graf BA, O’Leary JM, Milbury PE (2008) Identification of anthocyanins in the liver, eye, and brain of blueberry-fed pigs. J Agric Food Chem 56:705–712

    Article  CAS  Google Scholar 

  71. Felgines C, Texier O, Garcin P, Besson C, Lamaison J-L, Scalbert A (2009) Tissue distribution of anthocyanins in rats fed a blackberry anthocyanin-enriched diet. Mol Nutr Food Res 53:1098–1103

    Article  CAS  Google Scholar 

  72. Passamonti S, Vrhovsek U, Vanzo A, Mattivi F (2005) Fast access of some grape pigments to the brain. J Agric Food Chem 53:7029–7034

    Article  CAS  Google Scholar 

  73. Passamonti S, Vrhovsek U, Mattivi F (2002) The interaction of anthocyanins with bilitranslocase. Biochem Biophys Res Commun 296:631–636

    Article  CAS  Google Scholar 

  74. Hollman PC, Bijsman MN, van Gameren Y, Cnossen EP, de Vries JH, Katan MB (1999) The sugar moiety is a major determinant of the absorption of dietary flavonoid glycosides in man. Free Radic Res 31:569–573

    Article  CAS  Google Scholar 

  75. Gee JM, DuPont MS, Day AJ, Plumb GW, Williamson G, Johnson IT (2000) Intestinal transport of quercetin glycosides in rats involves both deglycosylation and interaction with the hexose transport pathway. J Nutr 130:2765–2771

    CAS  Google Scholar 

  76. Vitrac X, Krisa S, Decendit A, Vercauteren J, Nuhrich A, Monti JP, Deffieux G, Merillon JM (2002) Carbon-14 biolabelling of wine polyphenols in vitis vinifera cell suspension cultures. J Biotechnol 95:49–56

    Article  CAS  Google Scholar 

  77. Fernandes I, Azevedo J, Faria A, Calhau C, de Freitas V, Mateus N (2008) Enzymatic hemisynthesis of metabolites and conjugates of anthocyanins. J Agric Food Chem 57:735–745

    Article  CAS  Google Scholar 

  78. Cani PD, Delzenne NM (2009) The role of the gut microbiota in energy metabolism and metabolic disease. Curr Pharm Des 15:1546–1558

    Article  CAS  Google Scholar 

  79. Goldberg DM, Yan J, Soleas GJ (2003) Absorption of three wine-related polyphenols in three different matrices by healthy subjects. Clin Biochem 36:79–87

    Article  CAS  Google Scholar 

  80. Rechner AR, Smith MA, Kuhnle G, Gibson GR, Debnam ES, Srai SK, Moore KP, Rice-Evans CA (2004) Colonic metabolism of dietary polyphenols: influence of structure on microbial fermentation products. Free Radic Biol Med 36:212–225

    Article  CAS  Google Scholar 

  81. Slimestad R, Fossen T, Vagen IM (2007) Onions: a source of unique dietary flavonoids. J Agric Food Chem 55:10067–10080

    Article  CAS  Google Scholar 

  82. Aura AM, Martin-Lopez P, O'Leary KA, Williamson G, Oksman-Caldentey KM, Poutanen K, Santos-Buelga C (2005) In vitro metabolism of anthocyanins by human gut microflora. Eur J Nutr 44:133–142

    Article  CAS  Google Scholar 

  83. Gonthier MP, Cheynier V, Donovan JL, Manach C, Morand C, Mila I, Lapierre C, Remesy C, Scalbert A (2003) Microbial aromatic acid metabolites formed in the gut account for a major fraction of the polyphenols excreted in urine of rats fed red wine polyphenols. J Nutr 133:461–467

    CAS  Google Scholar 

  84. Selma MV, Espin JC, Tomas-Barberan FA (2009) Interaction between phenolics and gut microbiota: role in human health. J Agric Food Chem 57:6485–6501

    Article  CAS  Google Scholar 

  85. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102:11070–11075

    Article  CAS  Google Scholar 

  86. Cani PD, Delzenne NM (2011) The gut microbiome as therapeutic target. Pharmacol Ther 130:202–212

    Article  CAS  Google Scholar 

  87. Verstraeten S, Fraga C, Oteiza P (2010) Flavonoids–membrane interactions: consequences for biological actions. In: Fraga C (ed) Plant phenolics and human health. Wiley, Hoboken NJ, pp 107–136

    Google Scholar 

  88. Daayf F, Lattanzio V (2008) Recent advances in polyphenol research. Wiley-Blackwell/Oxford, Chichester/Ames, pp 1–379

    Book  Google Scholar 

  89. Milbury PE, Vita JA, Blumberg JB (2010) Anthocyanins are bioavailable in humans following an acute dose of cranberry juice. J Nutr 140:1099–1104

    Article  CAS  Google Scholar 

  90. Ohnishi R, Ito H, Kasajima N, Kaneda M, Kariyama R, Kumon H, Hatano T, Yoshida T (2006) Urinary excretion of anthocyanins in humans after cranberry juice ingestion. Biosci Biotechnol Biochem 70:1681–1687

    Article  CAS  Google Scholar 

  91. Kay CD, Mazza GJ, Holub BJ (2005) Anthocyanins exist in the circulation primarily as metabolites in adult men. J Nutr 135:2582–2588

    CAS  Google Scholar 

  92. Felgines C, Talavera S, Texier O, Gil-Izquierdo A, Lamaison JL, Remesy C (2005) Blackberry anthocyanins are mainly recovered from urine as methylated and glucuronidated conjugates in humans. J Agric Food Chem 53:7721–7727

    Article  CAS  Google Scholar 

  93. Frank T, Janßen M, Netzel M, Straß G, Kler A, Kriesl E, Bitsch I (2005) Pharmacokinetics of anthocyanidin-3-glycosides following consumption of Hibiscus sabdariffa L. extract. J Clin Pharmacol 45:203–210

    Article  CAS  Google Scholar 

  94. Bitsch I, Janssen M, Netzel M, Strass G, Frank T (2004) Bioavailability of anthocyanidin-3-glycosides following consumption of elderberry extract and blackcurrant juice. Int J Clin Pharmacol Ther 42:293–300

    CAS  Google Scholar 

  95. Bitsch R, Netzel M, Frank T, Strass G, Bitsch I (2004) Bioavailability and biokinetics of anthocyanins from red grape juice and red wine. J Biomed Biotechnol 5:293–298

    Article  Google Scholar 

  96. Bitsch R, Netzel M, Sonntag S, Strass G, Frank T, Bitsch I (2004) Urinary excretion of cyanidin glucosides and glucuronides in healthy humans after elderberry juice ingestion. J Biomed Biotechnol 5:343–345

    Article  Google Scholar 

  97. Kay CD, Mazza G, Holub BJ, Wang J (2004) Anthocyanin metabolites in human urine and serum. Br J Nutr 91:933–942

    Article  CAS  Google Scholar 

  98. Frank T, Netzel M, Strass G, Bitsch R, Bitsch I (2003) Bioavailability of anthocyanidin-3-glucosides following consumption of red wine and red grape juice. Can J Physiol Pharmacol 81:423–435

    Article  CAS  Google Scholar 

  99. Felgines C, Talavera S, Gonthier MP, Texier O, Scalbert A, Lamaison JL, Remesy C (2003) Strawberry anthocyanins are recovered in urine as glucuro- and sulfoconjugates in humans. J Nutr 133:1296–1301

    CAS  Google Scholar 

  100. Nielsen IL, Dragsted LO, Ravn-Haren G, Freese R, Rasmussen SE (2003) Absorption and excretion of black currant anthocyanins in humans and Watanabe heritable hyperlipidemic rabbits. J Agric Food Chem 51:2813–2820

    Article  CAS  Google Scholar 

  101. Mazza G, Kay CD, Cottrell T, Holub BJ (2002) Absorption of anthocyanins from blueberries and serum antioxidant status in human subjects. J Agric Food Chem 50:7731–7737

    Article  CAS  Google Scholar 

  102. Wu X, Cao G, Prior RL (2002) Absorption and metabolism of anthocyanins in elderly women after consumption of elderberry or blueberry. J Nutr 132:1865–1871

    CAS  Google Scholar 

  103. Bub A, Watzl B, Heeb D, Rechkemmer G, Briviba K (2001) Malvidin-3-glucoside bioavailability in humans after ingestion of red wine, dealcoholized red wine and red grape juice. Eur J Nutr 40:113–120

    Article  CAS  Google Scholar 

  104. Matsumoto H, Inaba H, Kishi M, Tominaga S, Hirayama M, Tsuda T (2001) Orally administered delphinidin 3-rutinoside and cyanidin 3-rutinoside are directly absorbed in rats and humans and appear in the blood as the intact forms. J Agric Food Chem 49:1546–1551

    Article  CAS  Google Scholar 

  105. Murkovic M, Mülleder U, Adam U, Pfannhauser W (2001) Detection of anthocyanins from elderberry juice in human urine. J Sci Food Agric 81:934–937

    Article  CAS  Google Scholar 

  106. Netzel M, Strass G, Janssen M, Bitsch I, Bitsch R (2001) Bioactive anthocyanins detected in human urine after ingestion of blackcurrant juice. J Environ Pathol Toxicol Oncol 20:7

    Article  Google Scholar 

  107. Lapidot T, Harel S, Granit R, Kanner J (1998) Bioavailability of red wine anthocyanins as detected in human urine. J Agric Food Chem 46:4297–4302

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação para a Ciência e Tecnologia (FCT) – Fundo Social Europeu, Programa Operacional Potencial Humano da EU and by studentship grants (SFRH/BPD/75294/2010 and SFRH/BD/38883/2007) and one research grant (PTDC/QUI/65501/2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Faria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Faria, A., Fernandes, I., Mateus, N., Calhau, C. (2013). Bioavailability of Anthocyanins. In: Ramawat, K., Mérillon, JM. (eds) Natural Products. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22144-6_75

Download citation

Publish with us

Policies and ethics