Skip to main content

Preparative Extraction and Separation of Phenolic Compounds

  • Reference work entry
  • First Online:
Natural Products

Abstract

Phenols are an important group of phytochemicals with significant health beneficial effects. Extraction of phenols from the biological sources is a growing field of interest and is an integrated part of analytical methods. Some of the common methods of extraction of phenolic compounds are solvent extraction, accelerated solvent extraction, supercritical fluid extraction, ultrasonic extraction, and microwave extraction. Separation is the next important step of analytical methods, which is done to separate the required phenolic components from the unwanted part of the extract. In case of phenols, methods such as liquid-liquid separation and chromatographic separation are applied; however, solid-phase extraction has been found to be one of the most popular methods of separation of phenolic compounds. All the above-mentioned different extraction and separation methods, along with some other analytical methods applied for phenols, have been discussed in detail in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ASE:

Accelerated solvent extraction

EM:

Electromagnetic

GC:

Gas chromatography

HPLC:

High-performance liquid chromatography

LDL:

Low-density lipoprotein

MAE:

Microwave-assisted extraction

SFE:

Supercritical fluid extraction

SPE:

Solid-phase extraction

tBHQ:

tert-Butylhydroquinone

TLC:

Thin-layer chromatography

UE:

Ultrasonic extraction

References

  1. Nutraceuticals functional foods and health claims on foods (1998) Policy paper: Therapeutic Products Programme and the Food Directorate from the Health Protection Branch, Health Canada

    Google Scholar 

  2. Brand-Williams W, Cuvelier M, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT- Food Sci Technol 28(1):25–30

    Article  CAS  Google Scholar 

  3. Pantelidis G, Vasilakakis M, Manganaris GA, Diamantidis G (2007) Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chem 102(3):777–783

    Article  CAS  Google Scholar 

  4. Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20(7):933–956

    Article  CAS  Google Scholar 

  5. Hollman PCH (2001) Evidence for health benefits of plant phenols: local or systemic effects? J Sci Food Agric 81(9):842–852

    Article  CAS  Google Scholar 

  6. de Pascual-Teresa S, Sanchez-Ballesta MT (2008) Anthocyanins: from plant to health. Phytochem Rev 7(2):281–299

    Article  CAS  Google Scholar 

  7. Fuhrman B, Aviram M (2002) Polyphenols and flavonoids protect LDL against atherogenic modifications. In: Cadenas E, Packer L (eds) Handbook of antioxidants. CRC Press, Baco Raton

    Google Scholar 

  8. Clifford MN (2000) Anthocyanins–nature, occurrence and dietary burden. J Sci Food Agric 80(7):1063–1072

    Article  CAS  Google Scholar 

  9. McGhie TK, Walton MC (2007) The bioavailability and absorption of anthocyanins: towards a better understanding. Mol Nutr Food Res 51(6):702–713

    Article  CAS  Google Scholar 

  10. Stalikas CD (2007) Extraction, separation, and detection methods for phenolic acids and flavonoids. J Sep Sci 30(18):3268–3295

    Article  CAS  Google Scholar 

  11. Vermerris W, Nicholson RL (2006) Phenolic compound biochemistry. Springer, Dordrecht

    Google Scholar 

  12. Giusti MM, Wrolstad RE, Acree TE, Decker EA, Penner MH, Reid DS, Schwartz SJ, Shoemaker CF, Smith D (eds) (2005) Handbook of food analytical chemistry-pigments, colorants, flavors, texture, and bioactive food components. Wiley, Hoboken

    Google Scholar 

  13. Ehlenfeldt MK, Prior RL (2001) Oxygen radical absorbance capacity (ORAC) and phenolic and anthocyanin concentrations in fruit and leaf tissues of highbush blueberry. J Agric Food Chem 49(5):2222–2227

    Article  CAS  Google Scholar 

  14. Rafi MM, Vastano BC, Zhu N, Ho CT, Ghai G, Rosen RT, Gallo MA, DiPaola RS (2002) Novel polyphenol molecule isolated from licorice root (Glycyrrhiza glabra) induces apoptosis, G2/M cell cycle arrest, and Bcl-2 phosphorylation in tumor cell lines. J Agric Food Chem 50(4):677–684

    Article  CAS  Google Scholar 

  15. Ningappa MB, Dinesha R, Srinivas L (2008) Antioxidant and free radical scavenging activities of polyphenol-enriched curry leaf (Murraya koenigii L.) extracts. Food Chem 106(2):720–728

    Article  CAS  Google Scholar 

  16. Romani A, Baldi A, Mulinacci N, Vincieri F, Tattini M (1996) Extraction and identification procedures of polyphenolic compounds and carbohydrates in phillyrea (Phillyrea angustifolia L.) leaves. Chromatographia 42(9):571–577

    Article  CAS  Google Scholar 

  17. Ku C, Mun S (2008) Optimization of the extraction of anthocyanin from Bokbunja (Rubus coreanus Miq.) marc produced during traditional wine processing and characterization of the extracts. Bioresour Technol 99(17):8325–8330

    Article  CAS  Google Scholar 

  18. Sriram G, Surendranath C, Sureshkumar G (1999) Kinetics of anthocyanin extraction from fresh and dried grape waste. Sep Sci Technol 34(4):683–697

    Article  CAS  Google Scholar 

  19. Harborne JB (1964) Biochemistry of phenolic compounds. Academic Press, London/New York

    Google Scholar 

  20. Swain T, Bate-Smith E (1962) Flavonoid compounds. In: Florkin M, Mason HS (eds) Comparative biochemistry. Academic Press, New York, pp 755–809

    Google Scholar 

  21. Ribereau Gayon P (1972) Plant phenolics. Oliver and Boyd, Edinburgh, pp 90–100

    Google Scholar 

  22. Harborne JB (ed) (1989) Plant phenolics. Academic Press, London; San Diego

    Google Scholar 

  23. Alonso Borbalán ÁM, Zorro L, Guillén DA, Garcia Barroso C (2003) Study of the polyphenol content of red and white grape varieties by liquid chromatography–mass spectrometry and its relationship to antioxidant power. J Chromatogr A 1012(1):31–38

    Article  CAS  Google Scholar 

  24. Javanmardi J, Stushnoff C, Locke E, Vivanco JM (2003) Antioxidant activity and total phenolic content of Iranian ocimum accessions. Food Chem 83(4):547–550

    Article  CAS  Google Scholar 

  25. Kalt W, Ryan DAJ, Duy JC, Prior RL, Ehlenfeldt MK, Vander Kloet SP (2001) Interspecific variation in anthocyanins, phenolics, and antioxidant capacity among genotypes of highbush and lowbush blueberries (Vaccinium Section cyanococcus spp.). J Agric Food Chem 49(10):4761–4767

    Article  CAS  Google Scholar 

  26. Luque de Castro MD, Garcia-Ayuso LE (1998) Soxhlet extraction of solid materials: an outdated technique with a promising innovative future. Anal Chim Acta 369(1–2):1–10

    Article  CAS  Google Scholar 

  27. Julkunen-Tiitto R (1985) Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. J Agric Food Chem 33(2):213–217

    Article  CAS  Google Scholar 

  28. Montedoro G, Servili M, Baldioli M, Miniati E (1992) Simple and hydrolyzable phenolic compounds in virgin olive oil. 1. Their extraction, separation, and quantitative and semiquantitative evaluation by HPLC. J Agric Food Chem 40(9):1571–1576

    Article  CAS  Google Scholar 

  29. Routray W, Orsat V (2012) Microwave-assisted extraction of flavonoids: a review. Food Bioprocess Technol 5(2):409–424

    Article  CAS  Google Scholar 

  30. Takeoka G, Dao L (2007) Anthocyanins. In: Hurst WJ (ed) Methods of analysis for functional foods and nutraceuticals. CRC PRESS, Boca Raton

    Google Scholar 

  31. Chavan U, Shahidi F, Naczk M (2001) Extraction of condensed tannins from beach pea (Lathyrus maritimus L.) as affected by different solvents. Food Chem 75(4):509–512

    Article  CAS  Google Scholar 

  32. Palma M, Piñeiro Z, Barroso CG (2001) Stability of phenolic compounds during extraction with superheated solvents. J Chromatogr A 921(2):169–174

    Article  CAS  Google Scholar 

  33. Liazid A, Palma M, Brigui J, Barroso CG (2007) Investigation on phenolic compounds stability during microwave-assisted extraction. J Chromatogr A 1140(1–2):29–34

    CAS  Google Scholar 

  34. Prasad KN, Yang BAO, Zhao M, Ruenroengklin N, Jiang Y (2009) Application of ultrasonication or high-pressure extraction of flavonoids from litchi fruit pericarp. J Food Proc Engin 32(6):828–843

    Article  Google Scholar 

  35. Prasad KN, Yang E, Yi C, Zhao M, Jiang Y (2009) Effects of high pressure extraction on the extraction yield, total phenolic content and antioxidant activity of longan fruit pericarp. Innov Food Sci Emerg Technol 10(2):155–159

    Article  CAS  Google Scholar 

  36. Ajila CM, Brar SK, Verma M, Tyagi RD, Godbout S, Valéro JR (2011) Extraction and analysis of polyphenols: recent trends. Crit Rev Biotechnol 31(3):227–249

    Article  CAS  Google Scholar 

  37. Kapasakalidis PG, Rastall RA, Gordon MH (2009) Effect of a cellulase treatment on extraction of antioxidant phenols from black currant (Ribes nigrum L.) pomace. J Agric Food Chem 57(10):4342–4351

    Article  CAS  Google Scholar 

  38. Landbo AK, Meyer AS (2001) Enzyme-assisted extraction of antioxidative phenols from black currant juice press residues (Ribes nigrum). J Agric Food Chem 49(7):3169–3177

    Article  CAS  Google Scholar 

  39. Fu YJ, Liu W, Zu YG, Tong MH, Li SM, Yan MM, Efferth T, Luo H (2008) Enzyme assisted extraction of luteolin and apigenin from pigeonpea [Cajanus cajan (L.) Millsp.] leaves. Food Chem 111(2):508–512

    Article  CAS  Google Scholar 

  40. Meyer AS, Jepsen SM, Sørensen NS (1998) Enzymatic release of antioxidants for human low-density lipoprotein from grape pomace. J Agric Food Chem 46(7):2439–2446

    Article  CAS  Google Scholar 

  41. Alonso-Salces RM, Korta E, Barranco A, Berrueta LA, Gallo B, Vicente F (2001) Determination of polyphenolic profiles of Basque cider apple varieties using accelerated solvent extraction. J Agric Food Chem 49(8):3761–3767

    Article  CAS  Google Scholar 

  42. Wang L, Weller CL (2006) Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 17(6):300–312

    Article  CAS  Google Scholar 

  43. Arapitsas P, Turner C (2008) Pressurized solvent extraction and monolithic column-HPLC/DAD analysis of anthocyanins in red cabbage. Talanta 74(5):1218–1223

    Article  CAS  Google Scholar 

  44. Erdoǧan S, Erdemoǧlu S (2011) Evaluation of polyphenol contents in differently processed apricots using accelerated solvent extraction followed by high-performance liquid chromatography diode array detector. Int J Food Sci Nutr 62(7):729–739

    Article  CAS  Google Scholar 

  45. Richter BE, Jones BA, Ezzell JL, Porter NL, Avdalovic N, Pohl C (1996) Accelerated solvent extraction: a technique for sample preparation. Anal Chem 68(6):1033–1039

    Article  CAS  Google Scholar 

  46. Camel V (2001) Recent extraction techniques for solid matrices – supercritical fluid extraction, pressurized fluid extraction and microwave-assisted extraction: their potential and pitfalls. Analyst 126(7):1182–1193

    Article  CAS  Google Scholar 

  47. Wijngaard HH, Ballay M, Brunton N (2012) The optimisation of extraction of antioxidants from potato peel by pressurised liquids. Food Chem 133(4):1123–1130

    Article  CAS  Google Scholar 

  48. Monrad JK, Howard LR, King JW, Srinivas K, Mauromoustakos A (2010) Subcritical solvent extraction of anthocyanins from dried red grape pomace. J Agric Food Chem 58(5):2862–2868

    Article  CAS  Google Scholar 

  49. Eskilsson CS, Hartonen K, Mathiasson L, Riekkola ML (2004) Pressurized hot water extraction of insecticides from process dust–comparison with supercritical fluid extraction. J Sep Sci 27(1–2):59–64

    Article  CAS  Google Scholar 

  50. Victório CP, Lage CLS, Kuster RM (2009) Flavonoid extraction from Alpinia zerumbet (Pers.) Burtt et Smith leaves using different techniques and solvents. Eclet Quim 34(1):19–24

    Google Scholar 

  51. Erdogan S, Ates B, Durmaz G, Yilmaz I, Seckin T (2011) Pressurized liquid extraction of phenolic compounds from Anatolia propolis and their radical scavenging capacities. Food Chem Toxicol 49(7):1592–1597

    Article  CAS  Google Scholar 

  52. Howard L, Pandjaitan N (2008) Pressurized liquid extraction of flavonoids from spinach. J Food Sci 73(3):C151–C157

    Article  CAS  Google Scholar 

  53. Bolling BW, Dolnikowski G, Blumberg JB, Oliver Chen CY (2009) Quantification of almond skin polyphenols by liquid chromatography-mass spectrometry. J Food Sci 74(4):C326–C332

    Article  CAS  Google Scholar 

  54. Çam M, Hışıl Y (2010) Pressurised water extraction of polyphenols from pomegranate peels. Food Chem 123(3):878–885

    Article  CAS  Google Scholar 

  55. Vichi S, Santini C, Natali N, Riponi C, López-Tamames E, Buxaderas S (2007) Volatile and semi-volatile components of oak wood chips analysed by accelerated solvent extraction (ASE) coupled to gas chromatography–mass spectrometry (GC–MS). Food Chem 102(4):1260–1269

    Article  CAS  Google Scholar 

  56. Chen XJ, Guo BL, Li SP, Zhang QW, Tu PF, Wang YT (2007) Simultaneous determination of 15 flavonoids in Epimedium using pressurized liquid extraction and high-performance liquid chromatography. J Chromatogr A 1163(1–2):96–104

    CAS  Google Scholar 

  57. Grażyna Z (2009) Pressurized liquid extraction versus other extraction techniques in micropreparative isolation of pharmacologically active isoflavones from Trifolium L. species. Talanta 79(1):46–53

    Article  CAS  Google Scholar 

  58. Verotta L, Peterlongo F (1993) Selective extraction of phenolic components from Ginkgo biloba extracts using supercritical carbon dioxide and off-line capillary gas chromatography/mass spectrometry. Phytochem Anal 4(4):178–182

    Article  CAS  Google Scholar 

  59. Wu SJ, Tsai JY, Chang SP, Lin DL, Wang SS, Huang SN, Ng LT (2006) Supercritical carbon dioxide extract exhibits enhanced antioxidant and anti-inflammatory activities of Physalis peruviana. J Ethnopharmacol 108(3):407–413

    Article  CAS  Google Scholar 

  60. Manpong P, Douglas S, Douglas PL, Pongamphai S, Teppaitoon W (2011) Preliminary investigation of gallic acid extraction from Jatropha curcas linn. leaves using supercritical carbon dioxide with methanol co-solvent. J Food Proc Engin 34(5):1408–1418

    Article  CAS  Google Scholar 

  61. Reyes T, Bandyopadhyay S, McCoy B (1989) Extraction of lignin from wood with supercritical alcohols. J Supercrit Fluids 2(2–3):80–84

    Article  CAS  Google Scholar 

  62. Gelmez N, Kincal NS, Yener ME (2009) Optimization of supercritical carbon dioxide extraction of antioxidants from roasted wheat germ based on yield, total phenolic and tocopherol contents, and antioxidant activities of the extracts. J Supercrit Fluids 48(3):217–224

    Article  CAS  Google Scholar 

  63. Serra AT, Seabra IJ, Braga MEM, Bronze MR, De Sousa HC, Duarte CMM (2010) Processing cherries (Prunus avium) using supercritical fluid technology. Part 1: recovery of extract fractions rich in bioactive compounds. J Supercrit Fluids 55(1):184–191

    Article  CAS  Google Scholar 

  64. Lin MC, Tsai MJ, Wen KC (1999) Supercritical fluid extraction of flavonoids from Scutellariae Radix. J Chromatogr A 830(2):387–395

    Article  CAS  Google Scholar 

  65. Akay S, Alpak I, Yesil-Celiktas O (2011) Effects of process parameters on supercritical CO2 extraction of total phenols from strawberry (Arbutus unedo L.) fruits: an optimization study. J Sep Sci 34(15):1925–1931

    Article  CAS  Google Scholar 

  66. Yilmaz EE, Özvural EB, Vural H (2011) Extraction and identification of proanthocyanidins from grape seed (Vitis vinifera) using supercritical carbon dioxide. J Supercrit Fluids 55(3):924–928

    Article  CAS  Google Scholar 

  67. Laroze LE, Díaz-Reinoso B, Moure A, Zúñiga ME, Domínguez H (2010) Extraction of antioxidants from several berries pressing wastes using conventional and supercritical solvents. Eur Food Res Technol 231(5):669–677

    Article  CAS  Google Scholar 

  68. Castro-Vargas HI, Rodríguez-Varela LI, Ferreira SRS, Parada-Alfonso F (2010) Extraction of phenolic fraction from guava seeds (Psidium guajava L.) using supercritical carbon dioxide and co-solvents. J Supercrit Fluid 51(3):319–324

    Article  CAS  Google Scholar 

  69. Yesil-Celiktas O, Otto F, Parlar H (2009) A comparative study of flavonoid contents and antioxidant activities of supercritical CO2 extracted pine barks grown in different regions of Turkey and Germany. Eur Food Res Technol 229(4):671–677

    Article  CAS  Google Scholar 

  70. Markom M, Hasan M, Daud WRW, Singh H, Jahim JM (2007) Extraction of hydrolysable tannins from Phyllanthus niruri Linn: effects of solvents and extraction methods. Sep Purif Technol 52(3):487–496

    Article  CAS  Google Scholar 

  71. Arlorio M, Coïsson JD, Travaglia F, Varsaldi F, Miglio G, Lombardi G, Martelli A (2005) Antioxidant and biological activity of phenolic pigments from Theobroma cacao hulls extracted with supercritical CO2. Food Res Int 38(8–9):1009–1014

    Article  CAS  Google Scholar 

  72. Goli AH, Barzegar M, Sahari MA (2005) Antioxidant activity and total phenolic compounds of pistachio (Pistachia vera) hull extracts. Food Chem 92(3):521–525

    Article  CAS  Google Scholar 

  73. Louli V, Ragoussis N, Magoulas K (2004) Recovery of phenolic antioxidants from wine industry by-products. Bioresour Technol 92(2):201–208

    Article  CAS  Google Scholar 

  74. Ziaková A, Brandšteterová E (2002) Application of different preparation techniques for extraction of phenolic antioxidants from lemon balm (Melissa officinalis) before HPLC analysis. J Liquid Chromatogr Relat Technol 25(19):3017–3032

    Article  CAS  Google Scholar 

  75. Murga R, Ruiz R, Beltran S, Cabezas JL (2000) Extraction of natural complex phenols and tannins from grape seeds by using supercritical mixtures of carbon dioxide and alcohol. J Agric Food Chem 48(8):3408–3412

    Article  CAS  Google Scholar 

  76. Le Floch F, Tena MT, Ríos A, Valcárcel M (1998) Supercritical fluid extraction of phenol compounds from olive leaves. Talanta 46(5):1123–1130

    Article  Google Scholar 

  77. Huang W, Xue A, Niu H, Jia Z, Wang J (2009) Optimised ultrasonic-assisted extraction of flavonoids from Folium eucommiae and evaluation of antioxidant activity in multi-test systems in vitro. Food Chem 114(3):1147–1154

    Article  CAS  Google Scholar 

  78. Pan Z, Qu W, Ma H, Atungulu GG, McHugh TH (2012) Continuous and pulsed ultrasound-assisted extractions of antioxidants from pomegranate peel. Ultrason Sonochem 19(2):365–372

    Article  CAS  Google Scholar 

  79. Vilkhu K, Mawson R, Simons L, Bates D (2008) Applications and opportunities for ultrasound assisted extraction in the food industry–A review. Innov Food Sci Emerg Technol 9(2):161–169

    Article  CAS  Google Scholar 

  80. Wegener G, Fengel D (1978) Rapid extraction of lignin from ball-milled spruce wood by the use of ultrasonics. Ultrasonics 16(4):186

    Article  CAS  Google Scholar 

  81. Rao VS, Swamy KM, Narayana KL (1984) Influence of ultrasound on extraction of tannins from deoiled salseed cake. Ultrasonics 22(1):29–32

    Article  CAS  Google Scholar 

  82. Veličković DT, Nikolova MT, Ivancheva SV, Stojanović JB, Veljković VB (2007) Extraction of flavonoids from garden (Salvia officinalis L.) and glutinous (Salvia glutinosa L.) sage by ultrasonic and classical maceration. J Serbian Chem Soc 72(1):73–80

    Article  CAS  Google Scholar 

  83. Londoño-Londoño J, Lima VR, Lara O, Gil A, Pasa TBC, Arango GJ, Pineda JRR (2010) Clean recovery of antioxidant flavonoids from citrus peel: optimizing an aqueous ultrasound-assisted extraction method. Food Chem 119(1):81–87

    Article  CAS  Google Scholar 

  84. Ye M, Li Y, Yan Y, Liu H, Ji X (2002) Determination of flavonoids in Semen cuscutae by RP-HPLC. J Pharm Biomed Anal 28(3–4):621–628

    Article  CAS  Google Scholar 

  85. Chen F, Sun Y, Zhao G, Liao X, Hu X, Wu J, Wang Z (2007) Optimization of ultrasound-assisted extraction of anthocyanins in red raspberries and identification of anthocyanins in extract using high-performance liquid chromatography-mass spectrometry. Ultrason Sonochem 14(6):767–778

    Article  CAS  Google Scholar 

  86. Corrales M, Toepfl S, Butz P, Knorr D, Tauscher B (2008) Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: a comparison. Innov Food Sci Emerg Technol 9(1):85–91

    Article  CAS  Google Scholar 

  87. Yang Y, Zhao S, Xu Y, Yu Z (2012) Optimization and comparison of three methods on anthocyanins extraction from blackcurrant (Ribes nigrum L.) using RSM. Adv Mater Res 361-363:691–700

    Article  CAS  Google Scholar 

  88. Rodrigues S, Pinto GAS (2007) Ultrasound extraction of phenolic compounds from coconut (Cocos nucifera) shell powder. J Food Engin 80(3):869–872

    Article  CAS  Google Scholar 

  89. Khan MK, Abert-Vian M, Fabiano-Tixier AS, Dangles O, Chemat F (2010) Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chem 119(2):851–858

    Article  CAS  Google Scholar 

  90. Karabegović IT, Veljković VB, Lazić ML (2011) Ultrasound-assisted extraction of total phenols and flavonoids from dry tobacco (Nicotiana tabacum) leaves. Nat Prod Commun 6(12):1855–1856

    Google Scholar 

  91. Li SA, Zhu RH, Zhong M, Zhang YP, Huang KL, Zhi X, Fu ST (2010) Effects of ultrasonic-assistant extraction parameters on total flavones yield of Selaginella doederleinii and its antioxidant activity. J Med Plants Res 4(17):1743–1750

    CAS  Google Scholar 

  92. Yang L, Cao YL, Jiang JG, Lin QS, Chen J, Zhu L (2010) Response surface optimization of ultrasound-assisted flavonoids extraction from the flower of Citrus aurantium L. var. amara Engl. J Sep Sci 33(9):1349–1355

    CAS  Google Scholar 

  93. Rao GH (2010) Optimization of ultrasound-assisted extraction of cyanidin 3-rutinoside from litchi (Litchi chinensis Sonn.) fruit pericarp. Analy Meth 2(8):1166–1170

    Article  CAS  Google Scholar 

  94. Prasad KN, Yang B, Zhao M, Sun J, Wei X, Jiang Y (2010) Effects of high pressure or ultrasonic treatment on extraction yield and antioxidant activity of pericarp tissues of longan fruit. J Food Biochem 34(4):838–855

    CAS  Google Scholar 

  95. Nemes SM (2007) Microwave-assisted extraction (MAE) of secoisolariciresinol diglucoside (SDG) from flaxseed. McGill University, Montreal/Quebec

    Google Scholar 

  96. Regier M, Schubert H (2005) Introducing microwave processing of food: principles and technologies. In: Schubert H, Regier M (eds) The microwave processing of foods. Woodhouse, Cambridge, pp 3–21

    Chapter  Google Scholar 

  97. Ganzler K, Salgo A, Valko K (1986) Microwave extraction: a novel sample preparation method for chromatography. J Chromatogr A 371:299–306

    Article  CAS  Google Scholar 

  98. Paré JRJ, Sigouin M, Lapointe J (1991) Microwave-assisted natural products extraction. Her Majesty the Queen in right of Canada as represented by Minister of Environment, Ottawa

    Google Scholar 

  99. Ahmad J, Langrish TAG (2012) Optimisation of total phenolic acids extraction from mandarin peels using microwave energy: The importance of the Maillard reaction. J Food Engin 109(1):162–174

    Article  CAS  Google Scholar 

  100. Zhang Z, Lv G, Pan H, Fan L (2012) Optimisation of the microwave-assisted extraction process for six phenolic compounds in Agaricus blazei murrill. Int J Food Sci Technol 47(1):24–31

    Article  CAS  Google Scholar 

  101. Song J, Li D, Liu C, Zhang Y (2011) Optimized microwave-assisted extraction of total phenolics (TP) from Ipomoea batatas leaves and its antioxidant activity. Innov Food Sci Emerg Technol 12(3):282–287

    Article  CAS  Google Scholar 

  102. Zhang L, Wang Y, Wu D, Xu M, Chen J (2011) Microwave-assisted extraction of polyphenols from camellia oleifera fruit hull. Molecules 16(6):4428–4437

    Article  CAS  Google Scholar 

  103. Sharma UK, Sharma K, Sharma N, Sharma A, Singh HP, Sinha AK (2007) Microwave-assisted efficient extraction of different parts of Hippophae rhamnoides for the comparative evaluation of antioxidant activity and quantification of its phenolic constituents by reverse-phase high-performance liquid chromatography (RP-HPLC)†. J Agric Food Chem 56(2):374–379

    Article  CAS  Google Scholar 

  104. Du G, Zhao HY, Zhang QW, Li GH, Yang FQ, Wang Y, Li YC, Wang YT (2010) A rapid method for simultaneous determination of 14 phenolic compounds in Radix puerariae using microwave-assisted extraction and ultra high performance liquid chromatography coupled with diode array detection and time-of-flight mass spectrometry. J Chromatogr A 1217(5):705–714

    Article  CAS  Google Scholar 

  105. Ballard TS, Mallikarjunan P, Zhou K, O’Keefe S (2010) Microwave-assisted extraction of phenolic antioxidant compounds from peanut skins. Food Chem 120(4):1185–1192

    Article  CAS  Google Scholar 

  106. Hayat K, Hussain S, Abbas S, Farooq U, Ding B, Xia S, Jia C, Zhang X, Xia W (2009) Optimized microwave-assisted extraction of phenolic acids from citrus mandarin peels and evaluation of antioxidant activity in vitro. Sep Purif Technol 70(1):63–70

    Article  CAS  Google Scholar 

  107. Xiao W, Han L, Shi B (2008) Microwave-assisted extraction of flavonoids from Radix astragali. Sep Purif Technol 62(3):614–618

    Article  CAS  Google Scholar 

  108. Hong N, Yaylayan VA, Raghavan GSV, Paré JRJ, Bélanger JMR (2001) Microwave-assisted extraction of phenolic compounds from grape seed. Nat Prod Lett 15(3):197–204

    Article  CAS  Google Scholar 

  109. Tang J (2005) Dielectric properties of foods. In: Schubert H, Reiger M (eds) The microwave processing of foods. Woodhead, Cambridge

    Google Scholar 

  110. Meda V, Raghavan V (2005) Microwave heating and the dielectric properties of foods. In: Schubert H, Reiger M (eds) The microwave processing of foods. Woodhead, Cambridge

    Google Scholar 

  111. Kubrakova IV, Toropchenova ES (2008) Microwave heating for enhancing efficiency of analytical operations (Review). Inorgan Mater 44(14):1509–1519

    Article  CAS  Google Scholar 

  112. Mandal V, Mohan Y, Hemalatha S (2007) Microwave assisted extraction-an innovative and promising extraction tool for medicinal plant research. Pharmacog Rev 1:7–18

    CAS  Google Scholar 

  113. Cannell R (1998) How to approach the isolation of a natural product. In: Cannell R (ed) Methods in biotechnology 4, vol 4, Natural products isolation. Humana Press, Totowa, pp 1–51

    Google Scholar 

  114. Jain T, Jain V, Pandey R, Vyas A, Shukla SS (2009) Microwave assisted extraction for phytoconstituents – an overview. Asian J Res Chem 2(1):19–25

    CAS  Google Scholar 

  115. Kratchanova M, Pavlova E, Panchev I (2004) The effect of microwave heating of fresh orange peels on the fruit tissue and quality of extracted pectin. Carbohydr Polym 56(2):181–185

    Article  CAS  Google Scholar 

  116. Yeoh S, Zhang S, Shi J, Langrish TAG (2008) A comparison of different techniques for water-based extraction of pectin from orange peels. Chem Engin Commun 195(5):511–520

    Article  CAS  Google Scholar 

  117. Zhongdong L, Guohua W, Yunchang G, Kennedy JF (2006) Image study of pectin extraction from orange skin assisted by microwave. Carbohydr Polym 64(4):548–552

    Article  CAS  Google Scholar 

  118. Orsat V, Raghavan V, Meda V (2005) Microwave technology for food processing: an overview. In: Schubert H, Reiger M (eds) The microwave processing of foods. Woodhead, Cambridge

    Google Scholar 

  119. Kaufmann B, Christen P (2002) Recent extraction techniques for natural products: microwave assisted extraction and pressurised solvent extraction. Phytochem Anal 13(2):105–113

    Article  CAS  Google Scholar 

  120. Li W, Li T, Tang K (2009) Flavonoids from mulberry leaves by microwave-assisted extract and anti-fatigue activity. Afn J Agric Res 4(9):898–902

    Google Scholar 

  121. Barnabas IJ, Dean JR, Fowlis IA, Owen SP (1995) Extraction of polycyclic aromatic hydrocarbons from highly contaminated soils using microwave energy. Analyst 120(7):1897–1904

    Article  CAS  Google Scholar 

  122. Du FY, Xiao XH, Luo XJ, Li GK (2009) Application of ionic liquids in the microwave-assisted extraction of polyphenolic compounds from medicinal plants. Talanta 78(3):1177–1184

    Article  CAS  Google Scholar 

  123. Bergeron C, Gafner S, Clausen E, Carrier DJ (2005) Comparison of the chemical composition of extracts from Scutellaria lateriflora using accelerated solvent extraction and supercritical fluid extraction versus standard hot water or 70 % ethanol extraction. J Agric Food Chem 53(8):3076–3080

    Article  CAS  Google Scholar 

  124. Liu Z, Yan G, Bu F, Sun J, Hu X, Zhang H (2005) Analysis of chemical composition of Acanthopanax senticosus leaves applying high-pressure microwave-assisted extraction. Chem Anality 50(5):851–861

    CAS  Google Scholar 

  125. Wang JX, Xiao XH, Li GK (2008) Study of vacuum microwave-assisted extraction of polyphenolic compounds and pigment from Chinese herbs. J Chromatogr A 1198–1199(1–2):45–53

    Google Scholar 

  126. Escribano-Bailon MT, Santos-Buelga C (2003) Polyphenol extraction from foods. In: Santos-Buelga C, Williamson G (eds.) Methods in polyphenol analysis, Royal Society of Chemistry, Cambridge, pp. 1–16

    Google Scholar 

  127. Barton GM, Evans RS, Gardner JAF (1952) Paper chromatography of phenolic substances. Nature 170(4319):249–250

    Article  CAS  Google Scholar 

  128. Wender SH, Gage TB (1949) Paper chromatography of flavonoid pigments. Science 109(2829):287

    Article  CAS  Google Scholar 

  129. Gage T, Douglass C, Wender S (1951) Identification of flavonoid compounds by filter paper chromatography. Anal Chem 23(11):1582–1585

    Article  CAS  Google Scholar 

  130. Ellnain-Wojtaszek M, Zgórka G (1999) High-performance liquid chromatography and thin-layer chromatography of phenolic acids from Ginkgo biloba L. leaves collected within vegetative period. J Liquid Chromatogr Relat Technol 22(10):1457–1471

    Article  CAS  Google Scholar 

  131. Ragazzi E, Veronese G (1973) Quantitative analysis of phenolic compounds after thin-layer chromatographic separation. J Chromatogr A 77(2):369–375

    Article  CAS  Google Scholar 

  132. Schmidtlein H, Herrmann K (1975) Quantitative analysis for phenolic acids by thin-layer chromatography. J Chromatogr A 115(1):123–128

    Article  CAS  Google Scholar 

  133. Lamuela-Raventós RM, Waterhouse AL (1994) A direct HPLC separation of wine phenolics. Am J Enol Viticulture 45(1):1–5

    Google Scholar 

  134. Merken HM, Beecher GR (2000) Measurement of food flavonoids by high-performance liquid chromatography: A review. J Agric Food Chem 48(3):577–599

    Article  CAS  Google Scholar 

  135. Litridou M, Linssen J, Schols H, Bergmans M, Posthumus M, Tsimidou M, Boskou D (1997) Phenolic compounds in virgin olive oils: fractionation by solid phase extraction and antioxidant activity assessment. J Sci Food Agric 74(2):169–174

    Article  CAS  Google Scholar 

  136. Grishkovets V, Poloiko A, Chirva V (1990) Production of sorbents for reversed-phase chromatography by the alkylation of the surface of silica gel with alcohols. Chem Nat Comp 26(3):312–314

    Article  Google Scholar 

  137. Escribano-Bailón MT, Guerra MT, Rivas-Gonzalo JC, Santos-Buelga C (1995) Proanthocyanidins in skins from different grape varieties. Zeitschrift für Lebensmitteluntersuchung und -Forschung A 200(3):221–224

    Article  Google Scholar 

  138. Pietta P, Bruno A, Mauri P, Rava A (1992) Separation of flavonol-2-O-glycosides from Calendula officinalis and Sambucus nigra by high-performance liquid and micellar electrokinetic capillary chromatography. J Chromatogr A 593(1–2):165–170

    CAS  Google Scholar 

  139. Wang J, Sporns P (2000) MALDI-TOF MS analysis of food flavonol glycosides. J Agric Food Chem 48(5):1657–1662

    Article  CAS  Google Scholar 

  140. Svedström U, Vuorela H, Kostiainen R, Laakso I, Hiltunen R (2006) Fractionation of polyphenols in hawthorn into polymeric procyanidins, phenolic acids and flavonoids prior to high-performance liquid chromatographic analysis. J Chromatogr A 1112(1–2):103–111

    Google Scholar 

  141. Lee J-H, Johnson JV, Talcott ST (2005) Identification of ellagic acid conjugates and other polyphenolics in muscadine grapes by HPLC-ESI-MS. J Agric Food Chem 53(15):6003–6010

    Article  CAS  Google Scholar 

  142. Sephadex LH-20. Gel filtration. Data File 18-1107-22 AB. GE Healthcare

    Google Scholar 

  143. Snook ME, Fortson PJ, Chortyk OT (1981) Gel chromatography for the isolation of phenolic acids from tobacco leaf. Anal Chem 53(2):374–377

    Article  CAS  Google Scholar 

  144. Kumar R (1992) Prosopis cineraria leaf tannins: their inhibitory effect upon ruminal cellulase and the recovery of inhibition by polyethylene glycol-4000. Basic Life Sci 59:699

    CAS  Google Scholar 

  145. Nonaka G-I, Miwa N, Nishioka I (1982) Stilbene glycoside gallates and proanthocyanidins from Polygonum multiflorum. Phytochemistry 21(2):429–432

    Article  CAS  Google Scholar 

  146. Jones WT, Broadhurst RB, Lyttleton JW (1976) The condensed tannins of pasture legume species. Phytochemistry 15(9):1407–1409

    Article  CAS  Google Scholar 

  147. Amarowicz R, Naczk M (2006) Gel filtration of condensed tannins and phenolic acids of canola hulls on Sephadex G-25 and G-50. Polish J Food Nutr Sci 15(4):415–418

    CAS  Google Scholar 

  148. Cacho J, Castells JE (1991) Fractionation of phenolic compounds from grapes by size exclusion liquid chromatography with HPLC instrumentation. Am J Enol Viticulture 42(4):327–335

    CAS  Google Scholar 

  149. Kraemer-Schafhalter A, Fuchs H, Pfannhauser W (1998) Solid-phase extraction (SPE) – a comparison of 16 materials for the purification of anthocyanins from aronia melanocarpa var Nero. J Sci Food Agric 78(3):435–440

    Article  CAS  Google Scholar 

  150. Zhang Z, Xuequn P, Yang C, Ji Z, Jiang Y (2004) Purification and structural analysis of anthocyanins from litchi pericarp. Food Chem 84(4):601–604

    Article  CAS  Google Scholar 

  151. Strack D, Mansell RL (1975) Polyamide column chromatography for resolution of complex mixtures of anthocyanins. J Chromatogr A 109(2):325–331

    Article  CAS  Google Scholar 

  152. Manuel J, Silva RD, Rosec J-P, Bourzeix M, Heredia N (1990) Separation and quantitative determination of grape and wine procyanidins by high performance reversed phase liquid chromatography. J Sci Food Agric 53(1):85–92

    Article  Google Scholar 

  153. Tomás-Barberán FA, Blázquez MA, Garcia-Viguera C, Ferreres F, Tomás-Lorente F (1992) A comparative study of different amberlite XAD resins in flavonoid analysis. Phytochem Anal 3(4):178–181

    Article  Google Scholar 

  154. Czochanska Z, Foo LY, Newman RH, Porter LJ (1980) Polymeric proanthocyanidins. stereochemistry, structural units, and molecular weight. J Chem Soc Perkin Trans 1:2278–2286

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valérie Orsat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Routray, W., Orsat, V. (2013). Preparative Extraction and Separation of Phenolic Compounds. In: Ramawat, K., Mérillon, JM. (eds) Natural Products. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22144-6_55

Download citation

Publish with us

Policies and ethics