Skip to main content

Bioproduction of trans-Resveratrol from Grapevine Cell Cultures

  • Reference work entry
  • First Online:
Natural Products

Abstract

The use of grapevine cell cultures to increase trans-resveratrol and stilbene-related production under controlled conditions is viewed as a promising biotechnological alternative to their extraction from the whole plant or their chemical synthesis. At present, in vitro plant cultures are rarely used as a commercial method for the production of bioactive compounds. The major problems hindering the development of the large-scale culture of plant cells include low productivity, cell line instability, and the difficulties involved in scaling up. This chapter describes how the composition of the medium, culture conditions, elicitors, bioreactor design, and other critical parameters influence the behavior of grapevine cell cultures and how optimization of these factors could allow improvements in trans-resveratrol and stilbene-related production. For these reasons, this chapter describes how high-producing Vitis cell lines, nutrient and precursor feeding, elicitation with stress factors, and signaling molecules, as well as metabolic engineering can be used to increase the production of these secondary metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4CL:

4-coumarate-CoA ligase

araE:

The low-affinity high-capacity bacterial araE transporter

C4H:

Cinnamate 4-hydroxylase

CHS:

Chalcone synthase

cv:

Cultivar

DW:

Dry cell weight

ET:

Ethylene

FW:

Fresh cell weight

JA:

Jasmonic acid

Phe:

Phenylalanine

MeJa:

Methyl jasmonate

PAL:

Phenylalanine ammonia-lyase

SA:

Salicylic acid

STS:

Stilbene synthase

trans-R:

trans-Resveratrol

3,4′,5:

Trihydroxystilbene

UV:

Ultraviolet

Vsts :

Vitis stilbene synthase

References

  1. Chong JL, Poutaraud A, Hugueney P (2009) Metabolism and roles of stilbenes in plants. Plant Sci 177:143–155. doi:10.1016/j.plantsci.2009.05.012

    Article  CAS  Google Scholar 

  2. Mattivi F, Reniero F, Korhammer S (1995) Isolation, characterization, and evolution in red wine vinification of resveratrol monomers. J Sci Food Agric 43:1820–1823. doi:10.1021/jf00055a013

    Article  CAS  Google Scholar 

  3. Jeandet P, Douillet-Breuil AC, Bessis R, Debord S, Sbaghi M, Adrian M (2002) Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J Agric Food Chem 50:2731–2741. doi:10.1021/jf011429s

    Article  CAS  Google Scholar 

  4. Morales M, Bru R, García-Carmona F, Ros Barceló A, Pedreño MA (1998) Effect of dimethyl-β-cyclodextrins on resveratrol metabolism in Gamay grapevine cell cultures before and after inoculation with shape Xylophilus ampelinus. Plant Cell Tiss Org Cult 53:179–187. doi:10.1023/A:1006027410575

    Article  CAS  Google Scholar 

  5. Bru R, Selles S, Casado-Vela J, Belchi-Navarro S, Pedreño MA (2006) Modified cyclodextrins are chemically defined glucan inducers of defence responses in grapevine cell cultures. J Agric Food Chem 54:65–71. doi:10.1021/jf051485j

    Article  CAS  Google Scholar 

  6. Okawara M, Katsuki H, Kurimoto E, Shibata H, Kume T, Akaike A (2007) Resveratrol protects dopaminergic neurons in midbrain slice culture from multiple insults. Biochem Pharmacol 73:550–560. doi:10.1016/j.bcp. 2006.11.003

    Article  CAS  Google Scholar 

  7. Bradamante S, Barenghi L, Villa A (2004) Cardiovascular protective effects of resveratrol. Cardiovasc Drug Rev 22:169–188. doi:10.1111/j.1527-3466.2004.tb00139.x

    Article  CAS  Google Scholar 

  8. Pervaiz S (2003) Resveratrol: from grapevines to mammalian biology. FASEB J 17:1975–1985. doi:10.1096/fj.03-0168rev

    Article  CAS  Google Scholar 

  9. de la Lastra CA, Villegas I (2005) Resveratrol as an anti-inflammatory and anti-aging agent: mechanisms and clinical implications. Mol Nutr Food Res 49:405–430. doi:10.1002/mnfr.200500022

    Article  Google Scholar 

  10. Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493–506. doi:10.1038/nrd2060

    Article  CAS  Google Scholar 

  11. Kaeberlein M, Rabinovitch PS (2006) Medicine: grapes versus gluttony. Nature 444:280–281. doi:10.1038/nature05308

    Article  CAS  Google Scholar 

  12. Hathway DE, Seakins JWT (1959) Hydroxystilbenes of Eucalyptus wandoo. PubMed Central. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1196941/. Accessed July 1959

  13. Nonomura S, Kanagawa H, Makimoto A (1963) Chemical constituents of polygonaceous plants. I. Studies on the components of Ko-Jo-Kon. (Polygonum cuspidatum Sieb. et Zucc.). PubMed. http://www.ncbi.nlm.nih.gov/pubmed/14089847. Accessed Oct 1963

  14. Verpoorte R, Contin A, Memelink J (2002) Biotechnology for production of plant secondary metabolites. Phytochem Rev 1:13–25. doi:10.1023/A:1015871916833

    Article  CAS  Google Scholar 

  15. Morales M, Ros Barceló A, Pedreño MA (2000) Plant Stilbenes: recent advances in their chemistry and biology. In: Hemantaranjan A (ed) Advances in plant physiology, 1st edn. Scientific Publishers, Jodhpur

    Google Scholar 

  16. Alleweldt G, Spiegel-Roy P, Reisch B (1990) Grapes (Vitis). In: Moore JN, Ballington JR, Moore JN, Ballington JR (eds) Genetic resources of temperature fruit and nut crops, 1st edn. International Society for Horticultural Science, Wageningen

    Google Scholar 

  17. Langcake P, Pryce RJ (1976) The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol Plant Pathol 9:77–86. doi:doi: 10.1016/0048-4059(76)90077-1

    Article  CAS  Google Scholar 

  18. Bavaresco L, Fregoni C (2001) Physiological role and molecular aspects of grapevine stilbenic compounds. In: Roubelakis-Angelakis KA (ed) Molecular biology and biotechnology of the grapevine, 1st edn. Kluwer academic Publishers, Netherlands

    Google Scholar 

  19. Fornara V, Onelli E, Sparvoli F, Rossoni M, Aina R, Marino G, Citterio S (2008) Localization of stilbene synthase in Vitis vinifera L. during berry development. Protoplasma 233:83–93. doi:10.1007/s00709-008-0309-8

    Article  CAS  Google Scholar 

  20. Tropf S, Lanz T, Rensing SA, Schröder J, Schröder G (1994) Evidence that stilbene synthases have developed from chalcone synthases several times in the course of evolution. J Mol Evol 38:610–618. doi10.1007/BF00175881

    Article  CAS  Google Scholar 

  21. Melchior F, Kindl H (1990) Grapevine stilbene synthase cDNA only slightly differing from chalcone synthase cDNA is expressed in Escherichia coli into a catalytically active enzyme. FEBS Lett 268:17–20. doi:10.1016/0014-793(90)80961-H

    Article  CAS  Google Scholar 

  22. Kiselev KV (2011) Perspectives for production and application of resveratrol. Appl Microbiol Biotechnol 90:417–425. doi:10.1007/s00253-011-3184-8

    Article  CAS  Google Scholar 

  23. Xu W, Yu Y, Zhou Q, Ding J, Dai L, Xie X, Xu Y, Zhang C, Wang Y (2011) Expression pattern, genomic structure, and promoter analysis of the gene encoding stilbene synthase from Chinese wild Vitis pseudoreticulata. J Exp Bot 62:2745–2761. doi:10.1093/jxb/erq447

    Article  CAS  Google Scholar 

  24. Lijavetzky D, Almagro L, Belchí-Navarro S, Martínez-Zapater JM, Bru R, Pedreño MA (2008) Synergistic effect of methyljasmonate and cyclodextrin on stilbene biosynthesis pathway gene expression and resveratrol production in Monastrell grapevine cell culture. BMC Res Notes 1:132–138. doi:10.1186/1756-0500-1-132

    Article  Google Scholar 

  25. Donnez D, Jeandet P, Clément C, Courot E (2009) Bioproduction of resveratrol and stilbene derivatives by plant cells and microorganisms. Trends Biotechnol 27:706–713. doi:10.1016/j.tibtech.2009.09.005

    Article  CAS  Google Scholar 

  26. Zamboni A, Vrhovsek U, Kassemeyer HH, Mattivi F, Velasco R (2006) Elicitor-induced resveratrol production in cell cultures of different grape genotypes (Vitis spp.). Vitis 45:63–68. doi:35400014285416.0030

    CAS  Google Scholar 

  27. Waffo-Teguo P, Decendit A, Krisa S, Deffieux G, Vercauteren J, Merillon JM (1996) The accumulation of stilbene glycosides in Vitis vinifera cell suspension cultures. J Nat Prod 59:1189–1191. doi:10.1021/np9605450

    Article  Google Scholar 

  28. Do CB, Cormier F (1990) Accumulation of anthocyanins enhanced by a high osmotic potential in grape (Vitis vinifera L.) cell suspensions. Plant Cell Rep 9:143–146. doi:10.1007/BF00232091

    Article  CAS  Google Scholar 

  29. Larronde F, Krisa S, Decendit A, Cheze C, Merillon JM (1998) Regulation of polyphenol production in Vitis vinifera cell suspension cultures by sugars. Plant Cell Rep 17:946–950. doi:10.1007/s002990050515

    Article  CAS  Google Scholar 

  30. Belhadj A, Telef N, Saigne C, Cluzet S, Barrieu F, Hamdi S, Mérillon JM (2008) Effect of methyl jasmonate in combination with carbohydrates on gene expression of PR proteins, stilbene and anthocyanin accumulation in grapevine cell cultures. Plant Physiol Biochem 46:493–499. doi:10.1016/j.plaphy.2007.12.001

    Article  CAS  Google Scholar 

  31. Kiselev KV, Dubrovina AS, Veselova MV, Bulgakov VP, Fedoreyev SA, Zhuravlev YN (2007) The rolB gene-induced overproduction of resveratrol in Vitis amurensis transformed cells. J Biotechnol 128:681–692. doi:10.1016/j.jbiotec.2006.11.008

    Article  CAS  Google Scholar 

  32. Saigne-Soulard C, Richard T, Merillon JM, Monti JP (2006) 13C NMR analysis of polyphenol biosynthesis in grape cells: Impact of various inducing factors. Anal Chim Acta 563:137–144. doi:10.1016/j.aca.2005.09.073

    Article  CAS  Google Scholar 

  33. Aumont V, Larronde F, Richard T, Budzinskic H, Decendit A, Deffieux G, Krisa S, Mérillon JM (2004) Production of highly 13 C-labeled polyphenols in Vitis vinifera cell bioreactor cultures. J Biotechnol 109:287–294. doi:10.1016/j.jbiotec.2004.01.004

    Article  CAS  Google Scholar 

  34. Yue X, Zhang W, Deng M (2011) Hyper-production of (13C)-labeled trans-resveratrol in Vitis vinifera suspension cell culture by elicitation and in situ adsorption. Biochem Eng J 53:292–296. doi:10.1016/j.bej.2010.12.002

    Article  CAS  Google Scholar 

  35. Chen JX, Hall DE, Murata J, De Luca V (2006) L-Alanine induces programmed cell death in V. labrusca cell suspension cultures. Plant Sci 171:734–744. doi:10.1016/j.plantsci.2006.07.003

    Article  CAS  Google Scholar 

  36. Vasconsuelo A, Boland R (2007) Molecular aspects of the early stages of elicitation of secondary metabolites in plants. Plant Sci 172:861–875. doi:10.1016/j.plantsci.2007.01.006

    Article  CAS  Google Scholar 

  37. Fregoni C, van Zeller de Macedo Basto Gonçalves MI, Vezzulli S (2009) Physiology and molecular biology of grapevine stilbenes: an update. In: Roubelakis-Angelakis KA (ed) Grapevine molecular physiology and biotechnology, 2nd edn. Springer, New York

    Google Scholar 

  38. Liswidowati F, Melchior F, Hohmann F, Schwer B, Kindl H (1991) Induction of stilbene synthase by Botrytis cinerea in cultured grapevine cells. Planta 183:307–314. doi:10.1007/BF00197803

    Article  CAS  Google Scholar 

  39. Calderón AA, Zapata JM, Muñoz R, Pedreño MA, Ros Barcelo A (1993) Resveratrol production as a part of the hypersensitive-like response of grapevine cells to an elicitor from Trichoderma viride. Wiley Blackwell. http://www.jstor.org/stable/2558124. Accessed 3 July 1993

  40. Commun K, Mauro MC, Chupeau Y, Boulay M, Burrus M, Jeandet P (2003) Phytoalexin production in grapevine protoplasts during isolation and culture. Plant Physiol Biochem 41:317–323. doi:10.1016/S0981-9428(03)00025-1

    Article  CAS  Google Scholar 

  41. Ferri M, Tassoni A, Franceschetti M, Righetti L, Naldrett MJ, Bagni N (2009) Chitosan treatment induces changes of protein expression profile and stilbene distribution in Vitis vinifera cell suspensions. Proteomics 9:610–624. doi:10.1002/pmic.200800386

    Article  CAS  Google Scholar 

  42. Santamaria AR, Mulinacci N, Valletta A, Innocenti M, Pasqua G (2011) Effects of elicitors on the production of resveratrol and viniferins in cell cultures of Vitis vinifera L. cv Italia. J Agric Food Chem 59:9094–9101. doi:10.1021/jf201181n

    Article  CAS  Google Scholar 

  43. Righetti L, Franceschetti M, Ferri M, Tassoni A, Bagni N (2007) Resveratrol production in Vitis vinifera cell suspensions treated with several elicitors. Unifi. http://www1.unifi.it/caryologia/past_volumes/60_1_2/60_1_sbi17.pdf. Accessed 30 Jan 2007

  44. Aziz A, Poinssot B, Daire X, Adrian M, Bezier A, Lambert B, Joubert JM, Pugin A (2003) Laminarin elicits defence responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola. Mol Plant Microbe Interact 16:1118–1128. doi:M-2003-0915-01R

    Article  CAS  Google Scholar 

  45. Poinssot B, Vandelle E, Bentéjac M, Adriain M, Levis C, Brygoo Y, Garin J, Scicilia F, Coutos-Thévenot P, Pugin A (2003) The endopolygalacturonase 1 from Botrytis cinerea activates grapevine defence reactions unrelated to its enzymatic activity. Mol Plant Microbe Interact 16:553–564. doi:M-2003-0410-01

    Article  CAS  Google Scholar 

  46. Bru R, Pedreño MA (2003) Procedure for the production of resveratrol from cell cultures. Patent PCT/WO 03/062406 A1

    Google Scholar 

  47. Belchi-Navarro S, Fernandez-Perez F, Bru R, Pedreño MA (2010) Strategy to increase trans-resveratrol production in grapevine suspension cultured cells and evaluation of its antitumoral activity. The 1st international conference of Resveratrol and Health

    Google Scholar 

  48. Almagro L, Sabater-Jara AB, Belchi-Navarro S, Fernandez-Perez F, Bru R, Pedreño MA (2011) Effect of UV light on secondary metabolite biosynthesis in plant cell cultures elicited with cyclodextrins and methyljasmonate. In: Plants and environment, 1st edn. Intech, Croatia

    Google Scholar 

  49. Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotech Adv 23:283–333. doi:10.1016/j.biotechadv.2005.01.003

    Article  CAS  Google Scholar 

  50. Ton J, Van Pelt JA, Van Loon LC, Pieterse CMJ (2002) Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Mol Plant Microbe Interact 15:27–34. doi:10.1094/MPMI.2002.15.1.27

    Article  CAS  Google Scholar 

  51. Lecourieux-Ouaked F, Pugin A, Lebrun-Garcia A (2000) Phosphoproteins involved in the signal transduction of cryptogein, an elicitor on defence reactions in tobacco. Mol Plant Microbe Interact 13:821–829. doi:10.1094/MPMI.2000.13.8.821

    Article  CAS  Google Scholar 

  52. Thomma BP, Penninckx IA, Broekaert WF, Cammue BP (2001) The complexity of disease signaling in Arabidopsis. PubMed.gov. http://www.ncbi.nlm.nih.gov/pubmed/11154919. Accessed Feb 2001

  53. Spoel SH, Koornneef A, Claessens SMC, Korzelius JP, Van Pelt JA (2003) NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defence pathways through a novel function in the cytosol. Plant Cell 15:760–770. doi:10.1105/tpc.009159

    Article  CAS  Google Scholar 

  54. Tassoni A, Fornalè S, Franceschetti M, Musiani F, Michael AJ, Perry B, Bagni N (2005) Jasmonates and Na-orthovanadate promote resveratrol production in V. vinifera cv. Barbera cell cultures. New Phytol 166:895–905. doi:10.1111/j.1469-8137.2005.01383.x

    Article  CAS  Google Scholar 

  55. Donnez D, Kim KH, Antoine S, Conreux A, De Luca V, Jeandet P, Clément C, Courot E (2011) Bioproduction of resveratrol and viniferins by an elicited grapevine cell culture in a 2 L stirred bioreactor. Process Biochem 46:1056–1062. doi:10.1016/j.procbio.2011.01.019

    Article  CAS  Google Scholar 

  56. Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381. doi:1040-2519/97/0601-0355$08.00

    Article  CAS  Google Scholar 

  57. Chung IM, Park MR, Chun JC, Yun SJ (2003) Resveratrol accumulation and resveratrol synthase gene expression in response to abiotic stresses and hormones in peanut plants. Plant Sci 164:103–109. doi:10.1016/S0168-9452(02)00341-2

    Article  CAS  Google Scholar 

  58. Sabater-Jara AB, Almagro A, Belchí-Navarro S, Ferrer MA, Ros-Barceló A, Pedreño MA (2010) Induction of sesquiterpenes, phytoesterols and extracellular pathogenesis-related proteins in elicited cell cultures of Capsicum annuum. J Plant Physiol 167:1273–1281. doi:10.1016/j.jplph.2010.04.015

    Article  CAS  Google Scholar 

  59. Belchi-Navarro S, Almagro L, Lijavetzky D, Bru R, Pedreño MA (2011) Enhanced extracellular production of trans-resveratrol in Vitis vinifera suspension cultured cells by using cyclodextrins and methyljasmonate. Plant Cell Rep. doi:10.1007/s00299-011-1141-8

    Google Scholar 

  60. Krisa S, Larronde F, Budzinski H, Decendit A, Deffieux G, Mérillon JM (1999) Stilbene production by Vitis vinifera cell suspension cultures: methyl jasmonate induction and 13 C biolabelling. J Nat Prod 62:1688–1690. doi:10.1021/np990239x

    Article  CAS  Google Scholar 

  61. Almagro L, Gomez Ros LV, Belchi-Navarro S, Bru R, Ros Barcelo A, Pedreno MA (2009) Class III peroxidases in plant defence reactions. J Exp Bot 60:377–390. doi:10.1093/jxb/ern277

    Article  CAS  Google Scholar 

  62. Ding CK, Wang CY, Gross KC, Smith DL (2002) Jasmonate and salicylate induce the expression of pathogenesis-related-protein genes and increase resistance to chilling injury in tomato fruit. Planta 214:895–901. doi:10.1007/s00425-001-0698-9

    Article  CAS  Google Scholar 

  63. Kiselev KV, Tyunin AP, Manyakhin AY, Zhuravlev YN (2010) Resveratrol content and expression patterns of stilbene synthase genes in Vitis amurensis cells treated with 5- azacytidine. Plant Cell Tiss Org Cult 105:65–72. doi:10.1007///s11240-010-9842-1

    Article  Google Scholar 

  64. Almagro L, Belchi-Navarro S, Gomez-Ros L, Martinez-Esteso MJ, Selles S, Bru R, Pedreño MA (2008) Cross-talk between signalling pathways in plant defense: following peroxidases. In: Mittler R (ed) An international journal for plant biology, 1st edn. Wiley-Blackwell, Malden

    Google Scholar 

  65. Broeckling CD, Huhman DV, Farag MA, Smith JT, May GD, Mendes P, Dixon RA, Sumner LW (2005) Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. J Exp Bot 53:323–326. doi:10.1093/jxb/eri058

    Article  Google Scholar 

  66. Adrian M, Jeandet P, Douillet-Breuil AC, Tesson L, Bessis R (2000) Stilbene content of mature Vitis vinifera berries in response to UV-C elicitation. J Agric Food Chem 48:6103–6105. doi:10.1021/jf0009910

    Article  CAS  Google Scholar 

  67. Versari A, Parpinello GP, Tornielli GB, Ferrarini R, Giulivo C (2001) Stilbene compounds and stilbene synthase expression during ripening, wilting, and UV treatment in grape cv. Corvina. J Agric Food Chem 49:5531–5536. doi:10.1021/jf010672o

    Article  CAS  Google Scholar 

  68. Pezet R, Perret C, Jean-Denis JB, Tabacchi R, Gindro K, Viret O (2003) δ-Viniferin, a resveratrol dehydrodimer: One of the major stilbenes synthesized by stressed grapevine leaves. J Agric Food Chem 51:5488–5492. doi:10.1021/jf030227o

    Article  CAS  Google Scholar 

  69. Keskin N, Kunter B (2008) Production of trans-resveratrol in ‘Cabernet Sauvignon’ (Vitis vinifera L.) callus culture in response to ultraviolet-C irradiation. Vitis 47:193–196. doi:35400018564352.0010

    CAS  Google Scholar 

  70. Keskin N, Kunter B (2010) Production of trans-resveratrol in callus tissue of Öküzgözü (Vitis vinifera L.) in response to ultraviolet-C irradiation. J Anim Plant Sci 20:197–200

    Google Scholar 

  71. Keller M, Steel CC, Creasy GL (2000) Stilbene accumulation in grapevine tissues: developmental and environmental effects. In: Bodson M, Verhoyen MNJ (eds) XXV International Horticultural Congress, part 4: culture techniques with special emphasis on environmental implications Acta horticulturae, 1st edn. ISHS Acta Horticulturae 514, Brussels

    Google Scholar 

  72. Liu W, Liu C, Yang C, Wang L, Li S (2010) Effect of grape genotype and tissue type on callus growth and production of resveratrols and their piceids after UV-C irradiation. Food Chem 122:475–481. doi:10.1016/j.foodchem.2010.03.055

    Article  CAS  Google Scholar 

  73. Iriti M, Faoro F (2009) Ozone-induced changes in plant secondary metabolism. In: Singh SN (ed) Climate change and crops, Environmental science and engineering. Springer, Berlin, pp 245–268

    Chapter  Google Scholar 

  74. Sgarbi E, Fornasiero RB, Lins AP, Bonatti PM (2003) Phenol metabolism is differentially affected by ozone in two cell lines from grape (Vitis vinifera L.) leaf. Plant Sci 165:951–957. doi:10.1016/S0168-9452(03)00219-X

    Article  CAS  Google Scholar 

  75. Cai Z, Riedel H, Saw NMMT, Mewis I, Reineke K, Knorr D, Smetanska I (2011) Effects of elicitors and high hydrostatic pressure on secondary metabolism of Vitis vinifera suspension culture. Process Biochem 46:1411–1416. doi:10.1016/j. procbio.2011.03.015

    Article  CAS  Google Scholar 

  76. Belchi-Navarro S, Almagro L, Bru R, Pedreño MA (2008) Combined use of cyclodextrin and methyl jasmonate to increase production of resveratrol. Patent PCT/WO2009106662

    Google Scholar 

  77. Decendit A, Ramawat KG, Waffo P, Deffieux G, Badoc A, Mérillon JM (1996) Anthocyanins, catechins, condensed tannins and piceid production in Vitis vinifera cell bioreactor cultures. Biotechnol Lett 18:659–662. doi:10.1007/BF00130761

    Article  CAS  Google Scholar 

  78. Eibl R, Eibl D (2008) Design of bioreactors suitable for plant cell and tissue cultures. Phytochem Rev 7:593–598. doi:10.1007/s11101-007-9083-z

    Article  CAS  Google Scholar 

  79. Eibl R, Werner S, Eibl D (2009) Disposable bioreactors for plant liquid cultures at Litre-scale. Eng Life Sci 9:156–164. doi:10.1002/elsc.200800102

    Article  CAS  Google Scholar 

  80. Ferri M, Dipalo SCF, Bagni N, Tassoni A (2011) Chitosan elicits mono-glucosylated stilbene production and release in fed-batch bioreactor cultures of grape cells. Food Chem 124:1473–1479. doi:10.1016/j.foodchem.2010.07.114

    Article  CAS  Google Scholar 

  81. Vera-Urbina JC, Sellés-Marchart S, Martinez-Esteso MJ, Pedreño MA, Bru-Martinez R Production of grapevine cell biomass (Vitis vinifera L. Gamay) and resveratrol in custom and commercial bioreactors using cyclodextrins and methyl jasmonate elicitors. In: Delmas D (ed) Resveratrol: source, production, and health benefits. Nova Science Publishers, Hauppauge, New York (in press)

    Google Scholar 

  82. Vera-Urbina JC (2012) Producción de resveratrol mediante cultivos de células vegetales de vid (Vitis vinifera L. cv Gamay). Escalado y diseño de biorreactores. Dissertation, University of Alicante

    Google Scholar 

  83. Wang SJ, Zhong JJ (1996) A novel centrifugal impeller bioreactor. I. Fluid circulation, mixing, and liquid velocity profiles. Biotechnol Bioeng 51:511–519. doi:10.1002/(SICI)1097-0290(19960905)51:5<511::AID-BIT2>3.0.CO;2-F

    Article  CAS  Google Scholar 

  84. Eibl R, Eibl D (2002) Bioreactors for plant cell and tissue cultures. In: Oksman-Caldentey KM, Barz WH (eds) Plant biotechnology and transgenic plants, 1st edn. Marcel Dekker, New York

    Google Scholar 

  85. Eibl R, Eibl D (2006) Application of disposable bag bioreactors in tissue engineering and for the production of therapeutic agents. Adv Biochem Eng Biotechnol 112:183–207. doi:10.1007/10_2008_3

    Google Scholar 

  86. Coutos-Thevenot P, Poinssot B, Bonomelli A, Yean H, Breda C, Buffard D, Esnault R, Hain R, Boulay M (2001) In vitro tolerance to Botrytis cinerea of grapevine 41B rootstock in transgenic plants expressing the stilbene synthase Vst1 gene under the control of a pathogen-inducible PR 10 promoter. J Exp Bot 52:901–910. doi:10.1093/jexbot/52.358.901

    Article  CAS  Google Scholar 

  87. Hain R, Reif HJ, Krause E, Langebartels R, Kindl H, Vornam B, Wiese W, Schmelzer E, Schreier PH, Stöcker RH, Stenzel K (1993) Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361:53–156. doi:10.1038/361153a0

    Article  Google Scholar 

  88. Giovinazzo G, D’Amico L, Paradiso A, Bollini R, Sparvoli F, De Gara L (2005) Antioxidant metabolite profiles in tomato fruit constitutively expressing the grapevine stilbene synthase gene. Plant Biotechnol J 3:57–69. doi:10.1111/j.1467-7652.2004.00099.x

    Article  CAS  Google Scholar 

  89. Hu Y S, Wang X, Zhong J, Lin Z (2006) High Content of Resveratrol in Lettuce Transformed with a Stilbene Synthase Gene of Parthenocissus henryana. J Agric Food Chem 54:8082–8085. doi:10.1021/jf061462k

    Article  Google Scholar 

  90. Kiselev KV, Dubrovina AS, Bulgakov VP (2009) Phenylalanine ammonia-lyase and stilbene synthase gene expression in rolB transgenic cell cultures of Vitis amurensis. Appl Microbiol Biotechnol 82:647–655. doi:10.1007/s00253-008-1788-4

    Article  CAS  Google Scholar 

  91. Palazón J, Cusido RM, Gonzalo J, Bonfill M, Morales S, Pinol MT (1998) Relation between the amount the rolC gene product and indole alkaloid accumulation in Catharanthus roseus transformed root cultures. J Plant Physiol 153:712–718. doi:922, 35400007196000.0270

    Article  Google Scholar 

  92. Palazón J, Cusido RM, Roig C, Pinol MT (1997) Effect of rol genes from Agrobacterium rhizogenes TL-DNA on nicotine production in tobacco root cultures. Plant Physiol Biochem 35(35):155–162. doi:35400006301189.0090

    Google Scholar 

  93. Bulgakova VP, Tchernodeda GK, Mischenkob NP, Khodakovskayaa MV, Glazunovb VP, Radchenkoa SV, Zverevab EV, Fedoreyevb SA, Zhuravleva YN (2002) Effect of salicylic acid, methyl jasmonate, ethephon and cantharidin on anthraquinone production by Rubia cordifolia callus cultures transformed with the rolB and rolC genes. J Biotechnol 97:213–221. doi:10.1016/S0168-1656(02)00067-6

    Article  Google Scholar 

  94. Dubrovina AS, Manyakhin AY, Zhuravlev YN, Kiselev KV (2010) Resveratrol content and expression of phenylalanine ammonia-lyase and stilbene synthase genes in rolC transgenic cell cultures of Vitis amurensis. Appl Microbiol Biotechnol 88:727–736. doi:10.1007/s00253-010-2792-z

    Article  CAS  Google Scholar 

  95. Trantas E, Panopoulos N, Ververidis F (2009) Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae. Metab Eng 11:355–366. doi:10.1016/j.ymben.2009.07.004

    Article  CAS  Google Scholar 

  96. Becker JW, Armstrong GO, Van der Merwe MJ, Lambrechts M, Vivier MA, Pretorius IS (2003) Metabolic engineering of Saccharomyces cerevisiae for the synthesis of the wine-related antioxidant resveratrol. FEMS Yeast Res 4:79–85. doi:10.1016/S1567-1356(03)00157-0

    Article  CAS  Google Scholar 

  97. Zhang Y, Li SZ, Li J, Pan X, Cahoon RE, Jaworski JG, Wang X, Jez JM, Chen F, Yu O (2006) Using unnatural protein fusions to engineer resveratrol biosynthesis in yeast and mammalian cells. J Am Chem Soc 128:13030–13031. doi:10.1021/ja0622094

    Article  CAS  Google Scholar 

  98. Wang Y, Halls C, Zhang J, Matsuno M, Zhang Y, Yu O (2011) Stepwise increase of resveratrol biosynthesis in yeast Saccharomyces cerevisiae by metabolic engineering. Metab Eng 13:455–463. doi:10.1016/j. ymben.2011.04.005

    Article  CAS  Google Scholar 

  99. Beekwilder J, Wolswinkel R, Jonker H, Hall R, de Vos CHR, Bovy A (2006) Production of resveratrol in recombinant microorganisms. Appl Environ Microbiol 72:5670–5672. doi:10.1128/AEM.00609-06

    Article  CAS  Google Scholar 

  100. Watts KT, Lee PC, Schmidt-Dannert C (2006) Biosynthesis of plantspecific stilbene polyketides in metabolically engineered Escherichia coli. BMC Biotechnol 6:22–34. doi:10.1186/1472-6750-6-22

    Article  Google Scholar 

  101. Katsuyamal Y, Funa N, Miyahisa I, Horinouchi S (2007) Synthesis of unnatural flavonoids and stilbenes by exploiting the plant biosynthetic pathway in Escherichia coli. Chem Biol 14:613–621. doi:10.1016/j.chembiol.2007.05.004

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Fundación Séneca, Agencia de Ciencia y Tecnología de la Región de Murcia en el marco de II PCTRM 2007-10 (08799/PI/08), and MICINN-FEDER (BIO2008-2941 and BIO2011-29856-C02-02). Almagro L. and Sabater-Jara AB held a grant from the Ministerio de Ciencia e Innovación.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Almagro, L. et al. (2013). Bioproduction of trans-Resveratrol from Grapevine Cell Cultures. In: Ramawat, K., Mérillon, JM. (eds) Natural Products. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22144-6_54

Download citation

Publish with us

Policies and ethics