Skip to main content

Cocoa Cultivation, Directed Breeding and Polyphenolics

  • Reference work entry
  • First Online:

Abstract

Seeds of Theobroma cacao are worldwide in use for production of cocoa butter and confectionary products. The production of raw cocoa from fresh seeds is based on a complex fermentation process, which leads to the aroma precursors. This process enhances the amount of peptides and free amino acids in the seeds, but it also reduces the amount of phenolic compounds, especially the proanthocyanidins. These antioxidative compounds are mostly composed of catechin and epicatechin monomers and oligomers up to decamers. The fermentation has to take into account that both factors, production of aroma precursors as well as maintenance of health-supporting phenolic factors, are guaranteed. The worldwide rising consumption of high-quality cocoa leads to strong international efforts to develop elite clones of trees with high field performance in resilience, quality, and yield.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bartley BGD (2005) The genetic diversity of cacao and its utilization. CABI, Cambridge

    Book  Google Scholar 

  2. Wolters B (1999) Dispersion of American crop plants on pre-columbian searoutes by Amerindians. In: Verbreitung amerikanischer Nutzpflanzen auf präkolumbischen Seewegen durch Indianer. Institut für amerikanische Völkerkunde e.V, Düsseldorf

    Google Scholar 

  3. Motamayor JC, Risterucci AM, Lopez PA, Ortiz CF, Moreno A, Lanaud C (2002) Cacao domestication I: the origin of the cacao cultivated by the Mayas. Heredity 89:380–386

    Article  CAS  Google Scholar 

  4. Cuatrecasas J (1964) Cacao and its allies: a taxonomic revision of the genus Theobroma. Contrib US Herbarium 35:379–614

    Google Scholar 

  5. Dias LAS (ed) (2001) Melhoramento genetico do cacaueiro. FUNAPE, Vicosa, 578 p

    Google Scholar 

  6. Trognitz B, Scheldemann X, Hansel-Hohl K, Kuant A, Grebe H, Hermann M (2011) Genetic population structure of Cacao plantings within a young area in Nicaragua. PLoS One 6(1):e16056. doi:10.1371/journal.pone.0016056

    Article  CAS  Google Scholar 

  7. Dias LAS (ed) (2003) Genetic improvement of cacao. EcoPort version by P. Griffee, FAO

    Google Scholar 

  8. Motamayor JC, Risterucci AM, Heat M, Lanaud C (2003) Cacao domestication II: progenitor germplasm of the Trinitario cacao cultivar. Heredity 91:322–330

    Article  CAS  Google Scholar 

  9. Sukha DA (2008) The influence of processing location, growing environment and pollen donor effects on the flavour and quality of selected cacao (Theobroma cacao L.) genotypes. Thesis, The University of the West Indies, Faculty of Engineering St. Augustine Campus, Trinidad

    Google Scholar 

  10. Eskes AB, Guarda DS, García CL, Garcia RP P (2007) Is genetic variation for sensory traits of cocoa pulp related to fine flavour cocoa traits? Ing Newsl 11:22–29

    Google Scholar 

  11. Garcia GC (2009) Catalogo de cultivares de cacao. Ministerio de Agricultura. Direccion General de Competividad Agraria, Lima

    Google Scholar 

  12. Motamayor JC, Lachenaud P, da Silva e Mota JW, Loor R, Kuhn DN, Brown JS, Schnell RJ (2008) Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L). PLoS One 3(10):3311, http://www.plosone.org/article/info%3Adoi%2%20F10.1371%2Fjournal.pone.0003311(27.03.2012)

    Google Scholar 

  13. Cocoa genome database. www.cacaogenomedb.org/

  14. Argout X, Salse J, Aury J-M, Guiltinan Jm, Droc G, Gouzy J, Allegre M, Chaparro C, … & Lanaud C (2011). The genome of Theobroma cacao. Nat Genet 43:101–108. doi:10.1038/ng.736. PMID 21186351. http://www.nature.com/ng/journal/v43/n2/full/ng.736.html#

    Google Scholar 

  15. Raja Harun RM, Hardwick K (1988) The effects of prolonged exposure to different light intensities on the photosynthesis of cocoa leaves. In: 10th International cocoa research conference, Santo Domingo, pp 205–209

    Google Scholar 

  16. Augusto SG (1997) Irrigacao complementar nos diferentes estagios fenologicos do cacaueiro (Theobroma cacao L.). Thesis, Federal University Vicosa

    Google Scholar 

  17. Zuidema PA, Leffelaar PA, Gerritsma W, Mommer L, Anten NPR (2005) A physiological production model for cocoa (Theobroma cacao): model presentation, validation and application. Agr Syst 84:195–225

    Article  Google Scholar 

  18. Santos Lima L, Gramacho KP, Pireo J, Clement D, Lopes UV, Garcis N, da Silva Gesteira A, Galatto FA, Cascardo JC, Micheli F (2010) Development, characterization, validation, and mapping of SSRs derived from Theobroma cacao L. – Moniliophthora perniciosa interaction ESTs. Tree genet genome. doi:10.1007/s/1295-0100282-1

    Google Scholar 

  19. Phillips-Mora W, Castillo J, Krauss U, Rodriguez E, Wilkinson MJ (2005) Evaluation of cocoa (Theobroma cacao) clones against seven colombian isolates of Moniliophthora roreri from four pathogen genetic groups. Plant Pathol 54:483–490

    Article  CAS  Google Scholar 

  20. Gregory PH, Griffin MJ, Maddinson AC, Ward MR (1984) Cocoa black pod: a reinterpretation. Cocoa Growers Bull 35:2–22

    Google Scholar 

  21. Adomako B, Adu-Ampomah Y, Ollemu LAA, (2006) Evaluation of resistance to swollen cocoa shoot virus (CSSV): methods, problems and selections. In: Eskes AB, Efron Y (eds) Global approaches to cocoa germplasm utilization and conservation. Final report of the CFC/ICCO/IPGRI project on “Cocoa Germplasm utilization and conservation: a global approach” (1998–2004), CFC Amsterdam, The Netherlands, ICCO, London IPGRI, Rome pp 208–216

    Google Scholar 

  22. Bong CL, Seow ST (1989) Chemical control of VSD on mature cocoa. Tech Bull Dept Agric Kota Kinabalu, Sabah, Malays 9:23–424

    Google Scholar 

  23. Rosmana A, Shepard M, Hebbar P, Mustaria A (2010) Control of cocoa pod borer and Phytophthora pod rot using degradable plastic pod sleeves and a nematode, Steinernema carpocapsae. Indones J Agric Sci 11:41–47

    Google Scholar 

  24. Evans HC (2007) Cacao diseases—the trilogy revisited. Phytopathology 97:1640–1643

    Article  Google Scholar 

  25. Niemenak N, Saare-Surminski K, Rohsius C, Omokolo Ndoumou D, Lieberei R (2008) Regeneration of somatic embryos in Theobroma cacao L. in temporary immersion bioreactor and analyses of free amino acids in different tissues. Plant Cell Rep 27(4):667–676

    Article  CAS  Google Scholar 

  26. Alemanno L, Ramos T, Gardanenec A, Andary C, Ferriere N (2003) Localization and identification of phenolic compounds in Theobroma cacao L. somatic embryogenesis. Ann Bot 92:1–11

    Article  Google Scholar 

  27. Simo C, Djocgone PF, Mbonobda HD, Effa PO, Bondjeko T, Okomolo DN (2011) Variation and heritability of polyphenoloxidasic activities in two hybrid families of Theobroma cacao L. after cocoa pods inoculation with Phytophtora megakarya Bras. et Grif. Plant Pathol J 10:89–98

    Article  CAS  Google Scholar 

  28. Gutmann M, Feucht W (1991) A new method for selective localization of flavan-3-ols in plant tissues involving glycomethacrylate embedding and microwave irradiation. Histochemistry 96:83.86

    Article  Google Scholar 

  29. Bhattacharya A, Sood P, Citovsky V (2010) The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Mol Plant Pathol 11:705–719

    CAS  Google Scholar 

  30. Kim H, Keeney PG (1984) (-)-Epicatechin content in fermented and unfermented cocoa beans. J Food Sci 49:1090–1092

    Article  CAS  Google Scholar 

  31. Liendo R, Padilla FC, Quintana A (1997) Characterization of cocoa butter extracted from Criollo cultivars of Theobroma cacao L. Food Res Int 30:727–731

    Article  CAS  Google Scholar 

  32. Pires JL, Cascardo JCM, Lambert SV, Figueira A (1998) Increasing cocoa butter yield through genetic improvement of Theobroma cacao L.: seed fat content variability, inheritance, and association with seed yield. Euphytica 103:115–121

    Article  Google Scholar 

  33. Jaenicke J (1999) Elektronenmikroskopische Untersuchungen an Embryonen von Theobroma cacao L. (Kakao) während der Embryogenese und der Samenkeimung. Dissertation, Technische Universität Hannover

    Google Scholar 

  34. Ziegleder G, Biehl B (1988) Analysis of cocoa flavour components and flavour precursors. In: Linskens HF, Jackson JF (eds) Modern methods of plant analysis, vol 8, Analysis of nonalcoholic beverages. Springer, Berlin/Heidelberg, pp 321–393

    Google Scholar 

  35. Müller S (1998) Histologische und cytologische Studien an Samen von Theobroma-Arten. Diploma-Thesis, University of Hamburg

    Google Scholar 

  36. Forsyth WGC, Quesnel VC (1963) The mechanism of cacao curing. Adv Enzymol 25:457–459

    Google Scholar 

  37. Figueira A, Lambert S, Carpenter D, Pires JL, Cascardo JCM, Romanczik LJ (1997) The similarity of cocoa flavour of fermented seeds from fingerprinted genotypes of Theobroma cacao L. from Brazil and Malaysia. Trop Agric (Trinidad) 74:132–139

    Google Scholar 

  38. Clapperton JF (1992) Assessment of cocoa flavour and fat content. In: Proceedings of the international workshop on conservation, characterization and utilization of cocoa genetic resources in the 21st century. Port-of-Spain, CRU, Trinidad and Tobago, pp 111–120

    Google Scholar 

  39. Clapperton JF, Yow S, Chan J, Lim D, Lockwood R, Romanczick L, Hammerstone J (1994) The contribution of genotype to cocoa (Theobroma cacao L.) flavor. Tropical Agriculture (Trinidad) 71:303-308

    Google Scholar 

  40. Niemenak N, Rohsius C, Elwers S, Ndoumou DO, Lieberei R (2006) Comparative study of different cocoa (Theobroma cacao L.) clones in terms of their phenolics and anthocyanins contents. J Food Compos Anal 19:612–619

    Article  CAS  Google Scholar 

  41. Quesnel VC (1965) Chloroform-extractable aromatic acids of cacao. J Sci Food Agric 16:596–599

    Article  CAS  Google Scholar 

  42. Kenyhercz TM, Kissinger PT (1978) Determination of selected acidic, neutral, and basic natural-products in cacao beans and processed cocoa. Liquid chromatography with electrochemical detection. Lloydia 41:130–139

    CAS  Google Scholar 

  43. Rohan TA (1958) Processing of raw cocoa. I. Small-scale fermentation. J Food Agric 9:104–111

    Article  CAS  Google Scholar 

  44. Jalal MAF, Collin HA (1977) Polyphenols of mature plants, seedlings and tissue cultures of Theobroma cacao. Phytochemistry 16:1377–1380

    Article  CAS  Google Scholar 

  45. Rohan TA, Connell M (1964) The precursors of chocolate aroma: a study of the flavanoids and phenolic acids. J Food Sci 29:460–463

    Article  CAS  Google Scholar 

  46. Wollgast J (2005) The contents and effects of polyphenols in chocolate: Qualitative and quantitative analyses of polyphenols in chocolate and chocolate raw products as well as evaluation of potential implications of chocolate consumption in human health. Dissertation, University of Giessen, Germany. http://geb.uni-giessen.de/geb/volltexte/2005/2239/Rev.2006-11-15

  47. Sanbongi C, Osakabe N, Natume M, Takizawa T, Gomi S, Osawa T (1998) Antioxidative polyphenols isolated from Theobroma cacao. J Agric Food Chem 46:454–457

    Article  CAS  Google Scholar 

  48. Stark T, Bareuther S, Hofmann T (2005) Sensory-guided decomposition of roasted cocoa nibs (Theobroma cacao) and structure determination of taste-active polyphenols. J Agric Food Chem 53:5407–5418

    Article  CAS  Google Scholar 

  49. Stark T, Justus H, Hofmann T (2006) Quantitative analysis of N-phenylpropenoyl-l-amino acids in roasted coffee and cocoa powder by means of a stable isotope dilution assay. J Agric Food Chem 54:2859–2867

    Article  CAS  Google Scholar 

  50. Stark T, Hofmann T (2005) Isolation, structure determination, synthesis, and sensory activity of N-phenylpropenoyl-l-amino acids from cocoa (Theobroma cacao). J Agric Food Chem 53:5419–5428

    Article  CAS  Google Scholar 

  51. Facchini PJ, Hagel J, Zulak KG (2002) Hydroxycinnamic acid amide metabolism: physiology and biochemistry. Can J Bot 80:577–589

    Article  CAS  Google Scholar 

  52. Adamson GE, Lazarus SA, Mitchell AE, Prior RL, Cao G, Jacobs PH, Kremers BG, Hammerstone JF, Rucker RB, Ritter KA, Schmitz KA (1999) HPLC method for the quantification of procyanidins in cocoa and chocolate samples and correlation to total antioxidant capacity. J Agric Food Chem 47:4184–4188

    Article  CAS  Google Scholar 

  53. Hammerstone JF, Lazarus SA, Mitchell AE, Rucker R, Schmitz HH (1999) Identification of procyanidins in cocoa (Theobroma cacao) and chocolate using high-performance liquid chromatography/mass spectrometry. J Agric Food Chem 47:490–496

    Article  CAS  Google Scholar 

  54. Gu L, Kelm M, Hammerstone JF, Beecher G, Cunningham D, Vannozzi S, Prior RL (2002) Fractionation of polymeric procyanidins from lowbush blueberry and quantification of procyanidins in selected foods with optimized normal-phase HPLC-MS fluorescent detection method. J Agric Food Chem 50:4852–4860

    Article  CAS  Google Scholar 

  55. Kim H, Keeney PG (1984) (-)-Epicatechin content in fermented and unfermented cocoa beans. J Food Sci 49:1090–1092

    Article  CAS  Google Scholar 

  56. Tomas-Barberan FA, Cienfuegos-Jovellanos E, Marin A, Muguerza B, Gil-Izquierdo A, Cerda B, Zafrilla P, Morillas P, Morillas J, Mulero J, Ibarra A, Pasamar MA, Ramon D, Espin JC (2007) A new process to develop a cocoa powder with higher flavonoid monomer content and enhanced bioavailability in healthy humans. J Agric Food Chem 55:3926–3935

    Article  CAS  Google Scholar 

  57. Gotti R, Furlanetto S, Pinzauti S, Cavrini V (2006) Analysis of catechins in Theobroma cacao beans by cyclodextrin-modified micellar electrokinetic chromatography. J Chromatogr A 1112:345–352

    Article  CAS  Google Scholar 

  58. Forsyth WGC (1955) Cocoa polyphenolic substances 3. Separation and estimation on paper chromatograms. Biochem J 60:108–111

    CAS  Google Scholar 

  59. He F, Pan QH, Shi Y, Duan CQ (2008) Biosynthesis and genetic regulation of proanthocyanidins in plants. Molecules 13:2674–2703

    Article  CAS  Google Scholar 

  60. Marles MAS, Ray H, Gruber MY (2003) New perspectives on proanthocyanidin biochemistry and molecular regulation. Phytochemistry 64:367–383

    Article  CAS  Google Scholar 

  61. Elwers S, Zambrano A, Rohsius C, Lieberei R (2009) Differences between the content of phenolic compounds in Criollo, Forastero and Trinitario cocoa seed (Theobroma cacao L.). Eur Food Res Technol 229:937–948

    Article  CAS  Google Scholar 

  62. Liu L (2010) Molecular Analysis of Genes Involved in the synthesis of proanthocyanidins in Theobroma cacao. http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD-4761/index.html. Penn State Electronic Thesis and Dissertation Collection, United States

  63. Porter LP, Ma Z, Chan BG (1991) Cacao procyanidins: major flavanoids and identification of some minor metabolites. Phytochemistry 30:1657–1663

    Article  CAS  Google Scholar 

  64. Tückmantel W, Kozikowski AP, Romanczyk LJ Jr (1999) Studies in polyphenol chemistry and bioactivity. Part 1. Preparation of building blocks from (+)-catechin. procyanidin formation. Synthesis of the cancer cell growth inhibitor, 3-O-galloyl (2R,3R)-epicatechin-4β,8[3-O-galloyl-(2R,3R)-epicatechin. J Am Chem Soc 121:12073–12081

    Article  Google Scholar 

  65. Griffith LA (1960) A comparative study of the seed polyphenols of the genus Theobroma. Biochem J 74:362–365

    Google Scholar 

  66. Bitsch I (2002) Kakao und Schokolade: gut für die Gesundheit. Neue Erkenntnisse über bioaktive Substanzen. Gordian 4:53–55

    Google Scholar 

  67. Baigrie BD (1994) Cocoa flavour. In: Piggot JR, Paterson A (eds) Understanding natural flavours. Blackie Academic and Professional, Glasgow

    Google Scholar 

  68. Cakirer MS (2003) Color as an indicator of flavanol content in the fresh seeds of Theobroma cacao L. MSc Thesis, The Pennsylvania State University

    Google Scholar 

  69. Laird SA, Leke Awung G, McLain RJ (2007) Cocoa farms in the Mount Cameroon region: biological and cultural diversity in local livelihoods. Biodivers Conserv 16:2401–2427

    Article  Google Scholar 

  70. Stoll L (2010) Biochemische Indikatoren für Keimung und Fermentation in Samen von Kakao (Theobroma cacao L.). Dissertation, University of Hamburg

    Google Scholar 

  71. Sánchez-Rabaneda F, Jáuregui O, Casals I, Andrés-Lacueva C, Izquierdo-Pulido M, Lamuela-Raventós RM (2003) Liquid chromatographic/electrospray ionization tendem mass spectrometric study of the phenolic composition of cocoa (Theobroma cacao). J Mass Spectrom 38:35–42

    Article  Google Scholar 

  72. Jinap Selamat M, Bakar J, Saari N (2002) Oxidation of polyphenols in unfermented and partly fermented cocoa beans by cocoa polyphenol oxidase and tyrosinase. J Sci Food Agric 82:559–566

    Article  Google Scholar 

  73. Hansen CE, Olmo M, Burri C (1998) Enzyme activities in cocoa beans during fermentation. J Sci Food Agric 77:273–281

    Article  CAS  Google Scholar 

  74. Haslam E (1998) Practical polyphenolics: from structure to molecular recognition and physiological action. Cambridge University Press, Cambridge

    Google Scholar 

  75. Andersson M, Koch G, Lieberei R (2006) Structure and function of the seed coat of Theobroma cacao L. and its possible impact on flavour precursor development during fermentation. JAppl Bot Food Qual 80:48–62

    Google Scholar 

  76. Voigt J, Wrann D, Heinrichs H, Biehl B (1994) The proteolytic formation of essential cocoa specific structures of the vicilin-class globulin of the cocoa seeds lacking in the globular storage proteins of coconuts, hazelnuts, and sunflower seeds. Food Chem 51:197–205

    Article  CAS  Google Scholar 

  77. Noor-Soffalina SS, Jinap S, Nazamis S, Nazimah SAH (2009) Effect of polyphenol and pH on cocoa Maillard-related flavour precursors in a lipidic model system. Int J Food Sci Technol 44:168–180

    Article  CAS  Google Scholar 

  78. Schwan RF, Wheals AE (2004) The microbiology of cocoa fermentation and its role in chocolate quality. Crit Rev Food Sci Nutr 44:205–211

    Article  CAS  Google Scholar 

  79. Rodriguez-Campos J, Escalona-Buendia HB, Orozco-Avila I, Lugo-Cervantes E, Jaramillo-Flores ME (2011) Dynamics of volatile and non volatile compounds in cocoa (Theobroma cacao L.) during fermentation and drying processes using principal compounds analysis. Food Res Int 44:250–258

    Article  CAS  Google Scholar 

  80. Amores F, Butler D, Ramos G, Sukha D, Espin S, Gomez A, Zambrano A, Hollywood N, van Loon R, Seguine E (2007) Project to determine the physical, chemical and organoleptic parameters to differentiate between fine and bulk cocoa. EX/134/10, Instituto Nacional Autonomo de investigaciones agropecuarias, Quevedo, Ecuador, pp 1–15

    Google Scholar 

  81. Biehl B, Heinrichs H, Ziegeler-Berghausen H, Hammoor M, Senyuk V (1993) The proteases of ungerminated cocoa seeds and their role in the fermentation process. Angew Bot 67:59–65

    CAS  Google Scholar 

  82. Biehl B, Passern D (1982) Proteolysis during fermentation-like incubation of cocoa seeds. J Sci Food Agric 33:1280–1290

    Article  CAS  Google Scholar 

  83. Biehl B, Brunner E, Passern D, Quesnel VC, Adomako D (1985) Acidification, proteolysis and flavour potential in fermenting cocoa beans. J Sci Food Agric 36:583–598

    Article  CAS  Google Scholar 

  84. De Brito ES, García NHP, Amâncio AC (2002) Effect of polyphenol oxidase (PPO) and treatments on total phenol and tannin content of cocoa nibs. Ciência e Tecnol de Aliment, Camp 22:45–48

    Article  Google Scholar 

  85. Wollgast J, Anklam E (2000) Review on polyphenols in Theobroma cacao: changes in composition during the manufacture of chocolate and methodology for identification and quantification. Food Res Int 33:423–447

    Article  CAS  Google Scholar 

  86. Rohsius C, Elwers S, Lieberei. (2010). Cocoa-Atlas. Foundation of the German Cocoa and Chocolate Industry. DVD, ISBN 9-783980-886666 Cocoa – Atlas. 2010 edition.

    Google Scholar 

  87. Camu N, De Winter T, Addo SK, Takrama JS, Bernaert H, De Vuyst L (2008) Fermentation of cocoa beans: influence of microbial activities and polyphenol concentrations on the flavour of chocolate. J Sci Food Agric 88:2288–2297

    Article  CAS  Google Scholar 

  88. Jinap S, Ikrawan Y, Bakar J, Sari N, Lioe HN (2008) Aroma precursors and methylpyrazines in underfermented cocoa beans induced by endogenous carboxypeptidase. J Food Sci 73:H141–H147

    Article  CAS  Google Scholar 

  89. Luna F, Crouzillat D, Cirou L, Bucheli P (2002) Chemical composition and flavor of Ecuadorian cocoa liquor. J Agric Food Chem 50:3527–3532

    Article  CAS  Google Scholar 

  90. Miller KB, Hurst WJ, Payne MJ, Stuart DA, Apgar J, Sweigart DS, OU B (2008) Impact of alkalization on the antioxidant and flavonol content of commercial cocoa powders. J Agric Food Chem 56:8527–8533

    Article  CAS  Google Scholar 

  91. Kondo K, Hirano R, Matsumoto A, Igarashi O, Itakura H (1996) Inhibition of LDL oxidation by cocoa. Lancet 30:1514

    Article  Google Scholar 

  92. Holt RR, Lazarus SA, Sullards MC, Zhu QY, Schramm DD, Hammerstone JF, Fraga CG, Schmitz HH, Keen CL (2002) Procyanidin dimer B2 [epicatechin-(4beta-8)-epicatechin] in human plasma after the consumption of a flavanol-rich cocoa. Am J Clin Nutr 76:798–804

    CAS  Google Scholar 

  93. Heiss C, Dejam A, Kleinbongard P, Schewe T, Sies H, Kelm M (2003) Vascular effects of cocoa rich in flavan-3-ols. JAMA 290:1030–1031

    Article  Google Scholar 

  94. Taubert D, Roesen R, Lehmann C, Jung N, Schömig E (2007) Effects of low habitual cocoa intake on blood pressure and bioactive nitric oxide: a randomized controlled trial. JAMA 298:49–60

    Article  CAS  Google Scholar 

  95. Balzer J, Rassaf T, Heiss C, Kleinbongard P, Lauer T, Merx M, Heussen N, Gross HB, Keen CL, Schroeter H, Kelm M (2008) Sustained benefits in vascular function through flavanol-containing cocoa in medicated diabetic patients: a double-masked, randomized, controlled trial. J Am Coll Cardiol 51:2141–2214

    Article  CAS  Google Scholar 

  96. Wang JF, Schramm DD, Holt RR, Ensunsa JL, Fraga CG, Schmitz HH, Keen CL (2000) A dose–response effect from chocolate consumption on plasma epicatechin and oxidative damage. J Nutr 130 (8S Suppl): 2115-2119.

    Google Scholar 

  97. Schroeter H, Heiss C, Balzer J, Kleinbongard P, Keen CL, Hollenberg NK, Sies H, Kwik-Uribe C, Schmitz HH, Kelm M (2006) (-)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in human. Proc Natl Acad Sci USA 103:1024–1029

    Article  CAS  Google Scholar 

  98. Zhu QY, Holt RR, Lazarus SA, Ensunsa JL, Hammerstone JF, Schmitz HH, Keen CL (2002) Stability of the flavan-3-ols epicatechin and catechin and related dimeric procyanidins derived from cocoa. J Agric Food Chem 50:1700–1705

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Lieberei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Lieberei, R., Kadow, D., Seigler, D. (2013). Cocoa Cultivation, Directed Breeding and Polyphenolics. In: Ramawat, K., Mérillon, JM. (eds) Natural Products. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22144-6_51

Download citation

Publish with us

Policies and ethics