Skip to main content

A-Team for Solving MRCPSP/max Problem

  • Conference paper
Agent and Multi-Agent Systems: Technologies and Applications (KES-AMSTA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6682))

Abstract

In this paper the E-JABAT-based A-Team architecture for solving multi-mode resource-constrained project scheduling problem with minimal and maximal time lags (MRCPSP/max) is proposed and experimentally validated. MRCPSP/max, also known as MRCPSP-GPR (MRCPSP with generalised precedence relations), belongs to the NP-hard problem class. To solve this problem an asynchronous team of agents implemented using JABAT middleware has been proposed. Three kinds of optimization agent has been used. Computational experiment involves evaluation of optimization agent performance within the A-Team. The paper contains the MRCPSP/max problem formulation, description of the proposed architecture for solving the problem instances, description of optimization algorithms and the discussion of the computational experiment results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbucha, D., Czarnowski, I., Jedrzejowicz, P., Ratajczak-Ropel, E., Wierzbowska, I.: E-JABAT An Implementation of the Web-Based A-Team. In: Nguyen, N.T., Jain, L.C. (eds.) Intelligent Agents in the Evolution of Web and Applications, pp. 57–86. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Bartusch, M., Mohring, R.H., Radermacher, F.J.: Scheduling Project Networks with Resource Constraints and Time Windows. Annual Operational Research 16, 201–240 (1988)

    MathSciNet  MATH  Google Scholar 

  3. Barrios, A., Ballestin, F., Valls, V.: A double genetic algorithm for the MRCPSP/max. Computers and Operations Research 38, 33–43 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Heilmann, R.: Resource-Constrained Project Scheduling: a Heuristic for the Multi-Mode Case. OR Spektrum 23, 335–357 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Heilmann, R.: A branch-and-bound procedure for the multi-mode resource-constrained project scheduling problem with minimum and maximum time lags. European Journal of Operational Research 144, 348–365 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jędrzejowicz, P., Wierzbowska, I.: JADE-Based A-Team Environment. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3993, pp. 719–726. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Jedrzejowicz, P., Ratajczak-Ropel, E.: Solving the RCPSP/max Problem by the Team of Agents. In: Håkansson, A., Nguyen, N.T., Hartung, R.L., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2009. LNCS, vol. 5559, pp. 734–743. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Neumann, K., Schwindt, C., Zimmermann, J.: Project Scheduling with Time Windows and Scarce Resources, 2nd edn. Springer, Heidelberg (2003)

    Book  MATH  Google Scholar 

  9. Nonobe, K., Ibaraki, T.: A Tabu Search Algorithm for a Generalized Resource Constrained Project Scheduling Problem. In: MIC 2003: The fifth metaheuristics International Conference, pp. 551–556 (2003)

    Google Scholar 

  10. PSPLIB, http://129.187.106.231/psplib

  11. Reyck, B., Herroelen, W.: The Multi-Mode Resource-Constrained Project Scheduling Problem with Generalized Precedence Relations. European Journal of Operational Research 119, 538–556 (1999)

    Article  MATH  Google Scholar 

  12. Talukdar, S., Baerentzen, L., Gove, A., de Souza, P.: Asynchronous Teams: Cooperation Schemes for Autonomous, Computer-Based Agents. Technical Report EDRC 18-59-96. Carnegie Mellon University, Pittsburgh (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jędrzejowicz, P., Ratajczak-Ropel, E. (2011). A-Team for Solving MRCPSP/max Problem. In: O’Shea, J., Nguyen, N.T., Crockett, K., Howlett, R.J., Jain, L.C. (eds) Agent and Multi-Agent Systems: Technologies and Applications. KES-AMSTA 2011. Lecture Notes in Computer Science(), vol 6682. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22000-5_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22000-5_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21999-3

  • Online ISBN: 978-3-642-22000-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics