Skip to main content

Analysis of an Averaging Operator for Atomic-to-Continuum Coupling Methods by the Arlequin Approach

  • Conference paper
  • First Online:
Numerical Analysis of Multiscale Computations

Abstract

A new coupling term for blending particle and continuum models with the Arlequin framework is investigated in this work. The coupling term is based on an integral operator defined on the overlap region that matches the continuum and particle solutions in an average sense. The present exposition is essentially the continuation of a previous work (Bauman et al., On the application of the Arlequin method to the coupling of particle and continuum models, Computational Mechanics, 42, 511–530, 2008) in which coupling was performed in terms of an H 1-type norm. In that case, it was shown that the solution of the coupled problem was mesh-dependent or, said in another way, that the solution of the continuous coupled problem was not the intended solution. This new formulation is now consistent with the problem of interest and is virtually mesh-independent when considering a particle model consisting of a distribution of heterogeneous bonds. The mathematical properties of the formulation are studied for a one-dimensional model of harmonic springs, with varying stiffness parameters, coupled with a linear elastic bar, whose modulus is determined by classical homogenization. Numerical examples are presented for one-dimensional and two-dimensional model problems that illustrate the approximation properties of the new coupling term and the effect of mesh size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babuška, I., Banerjee, U., Osborn, J.E.: On principles for the selection of shape functions for the generalized finite element method. Computer Methods in Applied Mechanics and Engineering 191(49), 5595–5629 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Badia, S., Bochev, P., Fish, J., Gunzburger, M., Lehoucq, R., Nuggehally, M., Parks, M.: A force-based blending model for atomistic-to-continuum coupling. International Journal for Multiscale Computational Engineering 5, 387–406 (2007)

    Article  Google Scholar 

  3. Badia, S., Parks, M., Bochev, P., Gunzburger, M., Lehoucq, R.: On atomistic-to-continuum (atc) coupling by blending. Multiscale Modeling and Simulation 7, 381–406 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bauman, P.T.: Adaptive multiscale modeling of polymeric materials using goal-oriented error estimation, arlequin coupling, and goals algorithms. Ph.D. thesis, The University of Texas at Austin (2008)

    Google Scholar 

  5. Bauman, P.T., Ben Dhia, H., Elkhodja, N., Oden, J.T., Prudhomme, S.: On the application of the Arlequin method to the coupling of particle and continuum models. Computational Mechanics 42, 511–530 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bauman, P.T., Oden, J.T., Prudhomme, S.: Adaptive multiscale modeling of polymeric materials: Arlequin coupling and goals algorithms. Computer Methods in Applied Mechanics and Engineering 198, 799–818 (2008)

    Article  MathSciNet  Google Scholar 

  7. Belytschko, T., Xiao, S.P.: Coupling methods for continuum model with molecular model. International Journal for Multiscale Computational Engineering 1(1), 115–126 (2003)

    Article  Google Scholar 

  8. Ben Dhia, H.: Multiscale mechanical problems: the Arlequin method. Comptes Rendus de l’Académie des Sciences Paris Série IIB 326(12), 899–904 (1998)

    Google Scholar 

  9. Ben Dhia, H.: Global local approaches: the Arlequin framework. European Journal of Computational Mechanics 15(1–3), 67–80 (2006)

    Google Scholar 

  10. Ben Dhia, H., Elkhodja, N.: Coupling of atomistic and continuum models in the Arlequin framework. In: Proceedings of the 8{ eme} Congrès de Mécanique, pp. 133–135. El Jadida, Maroc (2007)

    Google Scholar 

  11. Ben Dhia, H., Rateau, G.: Mathematical analysis of the mixed Arlequin method. Comptes Rendus de l’Académie des Sciences Paris Série I 332, 649–654 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Ben Dhia, H., Rateau, G.: Application of the Arlequin method to some structures with defects. Revue Européenne des Eléments Finis 332, 649–654 (2002)

    MathSciNet  Google Scholar 

  13. Ben Dhia, H., Rateau, G.: The Arlequin method as a flexible engineering design tool. Int. J. Numer. Meth. Engng. 62(11), 1442–1462 (2005)

    Article  MATH  Google Scholar 

  14. Broughton, J.Q., Abraham, F.F., Bernstein, N., Kaxiras, E.: Concurrent coupling of length scales: Methodology and application. Phys. Rev. B 60(4), 2391–2403 (1999)

    Article  Google Scholar 

  15. Chamoin, L., Oden, J.T., Prudhomme, S.: A stochastic coupling method for atomic-to-continuum Monte Carlo simulations. Comput. Methods Appl. Mech. Engng. 197, 3530–3546 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chamoin, L., Prudhomme, S., Ben Dhia, H., Oden, J.T.: Ghost forces and spurious effects in atomic-to-continuum coupling methods by the Arlequin approach. Int. J. Numer. Meth. Engng. 83(8-9), 1081–1113 (2010)

    Article  MATH  Google Scholar 

  17. Curtin, W., Miller, R.: Atomistic/continuum coupling in computational material science. Modeling and Simulation in Materials Science and Engineering 11, R33–R68 (2003)

    Article  Google Scholar 

  18. Dobson, M., Luskin, M.: Analysis of a force-based quasicontinuum approximation. Mathematical Modelling and Numerical Analysis 42(1), 113–139 (2009)

    Article  MathSciNet  Google Scholar 

  19. Dobson, M., Luskin, M.: An optimal order error analysis of the one-dimensional quasicontinuum approximation. SIAM Journal on Numerical Analysis 47(4), 2455–2475 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. E, W., Engquist, B., Huang, Z.: Heterogeneous multiscale method: A general methodology for multiscale modeling. Physical Review B 67, 092,101 (2003)

    Google Scholar 

  21. E, W., Engquist, B., Li, X., Ren, W., Vanden-Eijnden, E.: Heterogeneous multiscale methods: A review. Communications in Computational Physics 2(3), 367–450 (2007)

    Google Scholar 

  22. Fish, J.: Bridging the scales in nano engineering and science. Journal of Nanoparticle Research 8(6), 577–594 (2006)

    Article  Google Scholar 

  23. Fish, J.: Multiscale Methods: Bridging the Scales in Science and Engineering. Oxford University Press (2009)

    Google Scholar 

  24. Fish, J., Nuggehally, M., Shephard, M., Picu, C., Badia, S., Parks, M., Gunzburger, M.: Concurrent atc coupling based on a blend of the continuum stress and the atomic force. Computer Methods in Applied Mechanics and Engineering 196, 4548–4560 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Miller, R.E., Tadmor, E.B.: The quasicontinuum method: overview, applications and current directions. Journal of Computer-Aided Materials Design 9, 203–239 (2002)

    Article  Google Scholar 

  26. Prudhomme, S., Ben Dhia, H., Bauman, P.T., Elkhodja, N., Oden, J.T.: Computational analysis of modeling error for the coupling of particle and continuum models by the Arlequin method. Computer Methods in Applied Mechanics and Engineering 197, 3399–3409 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Prudhomme, S., Chamoin, L., Ben Dhia, H., Bauman, P.T.: An adaptive strategy for the control of modeling error in two-dimensional atomic-to-continuum coupling simulations. Computer Methods in Applied Mechanics and Engineering 198, 1887–1901 (2009)

    Article  Google Scholar 

  28. Tadmor, E.B., Ortiz, M., Phillips, R.: Quasicontinuum analysis of defects in solids. Philosophical Magazine A73, 1529–1563 (1996)

    Google Scholar 

  29. Wagner, G.J., Liu, W.K.: Coupling of atomistic and continuum simulations using a bridging scale decomposition. Journal of Computational Physics 190, 249–274 (2003)

    Article  MATH  Google Scholar 

  30. Xiao, S.P., T. Belytschko, T.: A bridging domain method for coupling continua with molecular dynamics. Computer Methods in Applied Mechanics and Engineering 193, 1645–1669 (2004)

    Google Scholar 

Download references

Acknowledgements

Support of this work by DOE under contract DE-FG02-05ER25701 is gratefully acknowledged. The second author, Robin Bouclier, would like also to thank ICES for hosting him for his internship during the Summer of 2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Prudhomme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Prudhomme, S., Bouclier, R., Chamoin, L., Dhia, H.B., Oden, J.T. (2012). Analysis of an Averaging Operator for Atomic-to-Continuum Coupling Methods by the Arlequin Approach. In: Engquist, B., Runborg, O., Tsai, YH. (eds) Numerical Analysis of Multiscale Computations. Lecture Notes in Computational Science and Engineering, vol 82. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21943-6_15

Download citation

Publish with us

Policies and ethics