Skip to main content

Molecular Mechanisms of Programmed Cell Death Induced by Acetic Acid in Saccharomyces cerevisiae

  • Chapter
  • First Online:
Microbial Stress Tolerance for Biofuels

Part of the book series: Microbiology Monographs ((MICROMONO,volume 22))

Abstract

Microorganisms face constant stressful conditions, such as weak acid stress, both in natural habitats and during their use for biotechnological applications. Microbes respond to stress by activating either cell adaptation or death pathways. Yeast Saccharomyces cerevisiae has been a valuable model to study the mechanisms of cell response to stressful environmental changes. This chapter summarizes current knowledge on molecular mechanisms of general weak acid stress response and programmed cell death in response to acetic acid as unraveled in S. cerevisiae. Future perspectives aimed at clarifying the complex intracellular signaling networks, integrating cell adaptation and death pathways in response to acetic acid stress are envisaged. Elucidation of finely regulated integration mechanisms of such pathways represents a challenge for understanding aspects of eukaryotic cell homeostasis as well as for improving the performance of a given yeast strain in industrial processes and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almeida B, Ohlmeier S, Almeida AJ, Madeo F, Leao C, Rodrigues F, Ludovico P (2009) Yeast protein expression profile during acetic acid-induced apoptosis indicates causal involvement of the TOR pathway. Proteomics 9:720–732

    Article  PubMed  CAS  Google Scholar 

  • Arneborg N, Jespersen L, Jakobsen M (2000) Individual cells of Saccharomyces cerevisiae and Zygosaccharomyces bailii exhibit different short-term intracellular pH responses to acetic acid. Arch Microbiol 174:125–128

    Article  PubMed  CAS  Google Scholar 

  • Atlante A, de Bari L, Bobba A, Marra E, Calissano P, Passarella S (2003) Cytochrome c, released from cerebellar granule cells undergoing apoptosis or excytotoxic death, can generate protonmotive force and drive ATP synthesis in isolated mitochondria. J Neurochem 86:591–604

    Article  PubMed  CAS  Google Scholar 

  • Attfield PV (1997) Stress tolerance: the key to effective strains of industrial baker’s yeast. Nat Biotechnol 15:1351–1357

    Article  PubMed  CAS  Google Scholar 

  • Burhans WC, Weinberger M (2009) Acetic acid effects on aging in budding yeast: are they relevant to aging in higher eukaryotes? Cell Cycle 8:2300–2302

    Article  PubMed  CAS  Google Scholar 

  • Burtner CR, Murakami CJ, Kennedy BK, Kaeberlein M (2009) A molecular mechanism of chronological aging in yeast. Cell Cycle 8:1256–1270

    Article  PubMed  CAS  Google Scholar 

  • Carmelo V, Bogaerts P, Sa-Correia I (1996) Activity of plasma membrane H+−ATPase and expression of PMA1 and PMA2 genes in Saccharomyces cerevisiae cells grown at optimal and low pH. Arch Microbiol 166:315–320

    Article  PubMed  CAS  Google Scholar 

  • Carmelo V, Santos H, Sa-Correia I (1997) Effect of extracellular acidification on the activity of plasma membrane ATPase and on the cytosolic and vacuolar pH of Saccharomyces cerevisiae. Biochim Biophys Acta 1325:63–70

    Article  PubMed  CAS  Google Scholar 

  • Carmona-Gutierrez D, Eisenberg T, Buttner S, Meisinger C, Kroemer G, Madeo F (2010a) Apoptosis in yeast: triggers, pathways, subroutines. Cell Death Differ. doi:10.1038/cdd.2009.219

  • Carmona-Gutierrez D, Frohlich KU, Kroemer G, Madeo F (2010b) Metacaspases are caspases. Doubt no more. Cell Death Differ 17:377–378

    Article  PubMed  CAS  Google Scholar 

  • Casal M, Cardoso H, Leao C (1996) Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae. Microbiology 142(Pt 6):1385–1390

    Article  PubMed  CAS  Google Scholar 

  • Cheng WC, Leach KM, Hardwick JM (2008) Mitochondrial death pathways in yeast and mammalian cells. Biochim Biophys Acta 1783:1272–1279

    Article  PubMed  CAS  Google Scholar 

  • Colombo S, Ma P, Cauwenberg L, Winderickx J, Crauwels M, Teunissen A, Nauwelaers D, de Winde JH, Gorwa MF, Colavizza D, Thevelein JM (1998) Involvement of distinct G-proteins, Gpa2 and Ras, in glucose- and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces cerevisiae. EMBO J 17:3326–3341

    Article  PubMed  CAS  Google Scholar 

  • Du L, Su Y, Sun D, Zhu W, Wang J, Zhuang X, Zhou S, Lu Y (2008) Formic acid induces Yca1p-independent apoptosis-like cell death in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 8:531–539

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg T, Buttner S, Kroemer G, Madeo F (2007) The mitochondrial pathway in yeast apoptosis. Apoptosis 12:1011–1023

    Article  PubMed  CAS  Google Scholar 

  • Fannjiang Y, Cheng WC, Lee SJ, Qi B, Pevsner J, McCaffery JM, Hill RB, Basanez G, Hardwick JM (2004) Mitochondrial fission proteins regulate programmed cell death in yeast. Genes Dev 18:2785–2797

    Article  PubMed  CAS  Google Scholar 

  • Fernandes AR, Mira NP, Vargas RC, Canelhas I, Sa-Correia I (2005) Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes. Biochem Biophys Res Commun 337:95–103

    Article  PubMed  CAS  Google Scholar 

  • Frank S, Gaume B, Bergmann-Leitner ES, Leitner WW, Robert EG, Catez F, Smith CL, Youle RJ (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1:515–525

    Article  PubMed  CAS  Google Scholar 

  • Frohlich KU, Fussi H, Ruckenstuhl C (2007) Yeast apoptosis-From genes to pathways. Semin Cancer Biol 17:112–121

    Article  PubMed  Google Scholar 

  • Fuchs BB, Mylonakis E (2009) Our paths might cross: the role of the fungal cell wall integrity pathway in stress response and cross talk with other stress response pathways. Eukaryot Cell 8:1616–1625

    Article  PubMed  CAS  Google Scholar 

  • Gasch AP, Werner-Washburne M (2002) The genomics of yeast responses to environmental stress and starvation. Funct Integr Genomics 2:181–192

    Article  PubMed  CAS  Google Scholar 

  • Giannattasio S, Guaragnella N, Corte-Real M, Passarella S, Marra E (2005) Acid stress adaptation protects Saccharomyces cerevisiae from acetic acid-induced programmed cell death. Gene 354:93–98

    Article  PubMed  CAS  Google Scholar 

  • Giannattasio S, Atlante A, Antonacci L, Guaragnella N, Lattanzio P, Passarella S, Marra E (2008) Cytochrome c is released from coupled mitochondria of yeast en route to acetic acid-induced programmed cell death and can work as an electron donor and a ROS scavenger. FEBS Lett 582:1519–1525

    Article  PubMed  CAS  Google Scholar 

  • Goldenthal MJ, Marin-Garcia J (2004) Mitochondrial signaling pathways: a receiver/integrator organelle. Mol Cell Biochem 262:1–16

    Article  PubMed  CAS  Google Scholar 

  • Gourlay CW, Du W, Ayscough KR (2006) Apoptosis in yeast - mechanisms and benefits to a unicellular organism. Mol Microbiol 62:1515–1521

    Article  PubMed  CAS  Google Scholar 

  • Greenwood MT, Ludovico P (2009) Expressing and functional analysis of mammalian apoptotic regulators in yeast. Cell Death Differ 17:737–745

    Article  PubMed  Google Scholar 

  • Gregori C, Bauer B, Schwartz C, Kren A, Schuller C, Kuchler K (2007) A genetic screen identifies mutations in the yeast WAR1 gene, linking transcription factor phosphorylation to weak-acid stress adaptation. FEBS J 274:3094–3107

    Article  PubMed  CAS  Google Scholar 

  • Guaragnella N, Pereira C, Sousa MJ, Antonacci L, Passarella S, Corte-Real M, Marra E, Giannattasio S (2006) YCA1 participates in the acetic acid induced yeast programmed cell death also in a manner unrelated to its caspase-like activity. FEBS Lett 580:6880–6884

    Article  PubMed  CAS  Google Scholar 

  • Guaragnella N, Antonacci L, Passarella S, Marra E, Giannattasio S (2007) Hydrogen peroxide and superoxide anion production during acetic acid-induced yeast programmed cell death. Folia Microbiol 7:237–240

    Article  Google Scholar 

  • Guaragnella N, Antonacci L, Giannattasio S, Marra E, Passarella S (2008) Catalase T and Cu, Zn-superoxide dismutase in the acetic acid-induced programmed cell death in Saccharomyces cerevisiae. FEBS Lett 582:210–214

    Article  PubMed  CAS  Google Scholar 

  • Guaragnella N, Bobba A, Passarella S, Marra E, Giannattasio S (2010a) Yeast acetic acid-induced programmed cell death can occur without cytochrome c release which requires metacaspase YCA1. FEBS Lett 584:224–228

    Article  PubMed  CAS  Google Scholar 

  • Guaragnella N, Passarella S, Marra E, Giannattasio S (2010b) Knock-out of metacaspase and/or cytochrome c results in the activation of a ROS-independent acetic acid-induced programmed cell death pathway in yeast. FEBS Lett 584:3655–3660

    Article  PubMed  CAS  Google Scholar 

  • Hatzixanthis K, Mollapour M, Seymour I, Bauer BE, Krapf G, Schuller C, Kuchler K, Piper PW (2003) Moderately lipophilic carboxylate compounds are the selective inducers of the Saccharomyces cerevisiae Pdr12p ATP-binding cassette transporter. Yeast 20:575–585

    Article  PubMed  CAS  Google Scholar 

  • Hauptmann P, Lehle L (2008) Kex1 protease is involved in yeast cell death induced by defective N-glycosylation, acetic acid, and chronological aging. J Biol Chem 283:19151–19163

    Article  PubMed  CAS  Google Scholar 

  • Hohmann S (2009) Control of high osmolarity signalling in the yeast Saccharomyces cerevisiae. FEBS Lett 583:4025–4029

    Article  PubMed  CAS  Google Scholar 

  • Holyoak CD, Stratford M, McMullin Z, Cole MB, Crimmins K, Brown AJ, Coote PJ (1996) Activity of the plasma membrane H(+)-ATPase and optimal glycolytic flux are required for rapid adaptation and growth of Saccharomyces cerevisiae in the presence of the weak-acid preservative sorbic acid. Appl Environ Microbiol 62:3158–3164

    PubMed  CAS  Google Scholar 

  • Joza N, Pospisilik JA, Hangen E, Hanada T, Modjtahedi N, Penninger JM, Kroemer G (2009) AIF: not just an apoptosis-inducing factor. Ann NY Acad Sci 1171:2–11

    Article  PubMed  CAS  Google Scholar 

  • Khan MA, Chock PB, Stadtman ER (2005) Knockout of caspase-like gene, YCA1, abrogates apoptosis and elevates oxidized proteins in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 102:17326–17331

    Article  PubMed  CAS  Google Scholar 

  • Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26

    Article  PubMed  CAS  Google Scholar 

  • Knorre DA, Smirnova EA, Severin FF (2005) Natural conditions inducing programmed cell death in the yeast Saccharomyces cerevisiae. Biochem (Mosc) 70:264–266

    Article  CAS  Google Scholar 

  • Krebs HA, Wiggins D, Stubbs M, Sols A, Bedoya F (1983) Studies on the mechanism of the antifungal action of benzoate. Biochem J 214:657–663

    PubMed  CAS  Google Scholar 

  • Kren A, Mamnun YM, Bauer BE, Schuller C, Wolfger H, Hatzixanthis K, Mollapour M, Gregori C, Piper P, Kuchler K (2003) War1p, a novel transcription factor controlling weak acid stress response in yeast. Mol Cell Biol 23:1775–1785

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nunez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16:3–11

    Article  PubMed  CAS  Google Scholar 

  • Kvitek DJ, Will JL, Gasch AP (2008) Variations in stress sensitivity and genomic expression in diverse S. cerevisiae isolates. PLoS Genet 4:e1000223

    Article  PubMed  Google Scholar 

  • Lambert RJ, Stratford M (1999) Weak-acid preservatives: modelling microbial inhibition and response. J Appl Microbiol 86:157–164

    Article  PubMed  CAS  Google Scholar 

  • Lastauskiene E, Citavicius D (2008) Influence of RAS genes on yeast Saccharomyces cerevisiae cell viability in acidic environment. Biologija 54:150–155

    Article  Google Scholar 

  • Leist M, Jaattela M (2001) Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2:589–598

    Article  PubMed  CAS  Google Scholar 

  • Liu ZL, Blaschek HP (2010) Biomass conversion inhibitors and in situ detoxification. In: Vertes A, Qureshi N, Yukawa H, Blaschek H (eds) Biomass to biofuels: strategies for global industries. Wiley, UK, pp 233–259

    Chapter  Google Scholar 

  • Longo VD (2003) The Ras and Sch9 pathways regulate stress resistance and longevity. Exp Gerontol 38:807–811

    Article  PubMed  CAS  Google Scholar 

  • Longo VD, Mitteldorf J, Skulachev VP (2005) Programmed and altruistic ageing. Nat Rev Genet 6:866–872

    Article  PubMed  CAS  Google Scholar 

  • Ludovico P, Sousa MJ, Silva MT, Leao C, Corte-Real M (2001) Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology 147:2409–2415

    PubMed  CAS  Google Scholar 

  • Ludovico P, Rodrigues F, Almeida A, Silva MT, Barrientos A, Corte-Real M (2002) Cytochrome c release and mitochondria involvement in programmed cell death induced by acetic acid in Saccharomyces cerevisiae. Mol Biol Cell 13:2598–2606

    Article  PubMed  CAS  Google Scholar 

  • Ludovico P, Sansonetty F, Silva MT, Corte-Real M (2003) Acetic acid induces a programmed cell death process in the food spoilage yeast Zygosaccharomyces bailii. FEMS Yeast Res 3:91–96

    PubMed  CAS  Google Scholar 

  • Madeo F, Frohlich E, Frohlich KU (1997) A yeast mutant showing diagnostic markers of early and late apoptosis. J Cell Biol 139:729–734

    Article  PubMed  CAS  Google Scholar 

  • Madeo F, Frohlich E, Ligr M, Grey M, Sigrist SJ, Wolf DH, Frohlich KU (1999) Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol 145:757–767

    Article  PubMed  CAS  Google Scholar 

  • Madeo F, Herker E, Maldener C, Wissing S, Lachelt S, Herlan M, Fehr M, Lauber K, Sigrist SJ, Wesselborg S, Frohlich KU (2002) A caspase-related protease regulates apoptosis in yeast. Mol Cell 9:911–917

    Article  PubMed  CAS  Google Scholar 

  • Madeo F, Carmona-Gutierrez D, Ring J, Buttner S, Eisenberg T, Kroemer G (2009) Caspase-dependent and caspase-independent cell death pathways in yeast. Biochem Biophys Res Commun 382:227–231

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Munoz GA, Kane P (2008) Vacuolar and plasma membrane proton pumps collaborate to achieve cytosolic pH homeostasis in yeast. J Biol Chem 283:20309–20319

    Article  PubMed  CAS  Google Scholar 

  • Mollapour M, Piper P (2001a) Targeted gene deletion in Zygosaccharomyces bailii. Yeast 18:173–186

    Article  PubMed  CAS  Google Scholar 

  • Mollapour M, Piper PW (2001b) The ZbYME2 gene from the food spoilage yeast Zygosaccharomyces bailii confers not only YME2 functions in Saccharomyces cerevisiae, but also the capacity for catabolism of sorbate and benzoate, two major weak organic acid preservatives. Mol Microbiol 42:919–930

    Article  PubMed  CAS  Google Scholar 

  • Mollapour M, Piper PW (2006) Hog1p mitogen-activated protein kinase determines acetic acid resistance in Saccharomyces cerevisiae. FEMS Yeast Res 6:1274–1280

    Article  PubMed  CAS  Google Scholar 

  • Mollapour M, Piper PW (2007) Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. Mol Cell Biol 27:6446–6456

    Article  PubMed  CAS  Google Scholar 

  • Mollapour M, Shepherd A, Piper PW (2008) Novel stress responses facilitate Saccharomyces cerevisiae growth in the presence of the monocarboxylate preservatives. Yeast 25:169–177

    Article  PubMed  CAS  Google Scholar 

  • Mollapour M, Shepherd A, Piper PW (2009) Presence of the Fps1p aquaglyceroporin channel is essential for Hog1p activation, but suppresses Slt2(Mpk1)p activation, with acetic acid stress of yeast. Microbiology 155:3304–3311

    Article  PubMed  CAS  Google Scholar 

  • Pearce AK, Booth IR, Brown AJ (2001) Genetic manipulation of 6-phosphofructo-1-kinase and fructose 2,6-bisphosphate levels affects the extent to which benzoic acid inhibits the growth of Saccharomyces cerevisiae. Microbiology 147:403–410

    PubMed  CAS  Google Scholar 

  • Pereira C, Camougrand N, Manon S, Sousa MJ, Corte-Real M (2007) ADP/ATP carrier is required for mitochondrial outer membrane permeabilization and cytochrome c release in yeast apoptosis. Mol Microbiol 66:571–582

    Article  PubMed  CAS  Google Scholar 

  • Pereira C, Silva RD, Saraiva L, Johansson B, Sousa MJ, Corte-Real M (2008) Mitochondria-dependent apoptosis in yeast. Biochim Biophys Acta 1783:1286–1302

    Article  PubMed  CAS  Google Scholar 

  • Pereira C, Chaves S, Alves S, Salin B, Camougrand N, Manon S, Joao Sousa M, Corte-Real M (2010) Mitochondrial degradation in acetic acid-induced yeast apoptosis: the role of Pep4 and the ADP/ATP carrier. Mol Microbiol. doi:10.1111/j.1365-2958.2010.07122.x

  • Perrone GG, Tan SX, Dawes IW (2008) Reactive oxygen species and yeast apoptosis. Biochim Biophys Acta 1783:1354–1368

    Article  PubMed  CAS  Google Scholar 

  • Pinto I, Cardoso H, Leao C, van Uden N (1989) High enthalpy and low enthalpy death in Saccharomyces cerevisiae induced by acetic acid. Biotechnol Bioeng 33:1350–1352

    Article  PubMed  CAS  Google Scholar 

  • Piper PW (1999) Yeast superoxide dismutase mutants reveal a pro-oxidant action of weak organic acid food preservatives. Free Radic Biol Med 27:1219–1227

    Article  PubMed  CAS  Google Scholar 

  • Piper P, Mahe Y, Thompson S, Pandjaitan R, Holyoak C, Egner R, Muhlbauer M, Coote P, Kuchler K (1998) The pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast. EMBO J 17:4257–4265

    Article  PubMed  CAS  Google Scholar 

  • Piper P, Calderon CO, Hatzixanthis K, Mollapour M (2001) Weak acid adaptation: the stress response that confers yeasts with resistance to organic acid food preservatives. Microbiology 147:2635–2642

    PubMed  CAS  Google Scholar 

  • Pozniakovsky AI, Knorre DA, Markova OV, Hyman AA, Skulachev VP, Severin FF (2005) Role of mitochondria in the pheromone- and amiodarone-induced programmed death of yeast. J Cell Biol 168:257–269

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro GF, Corte-Real M, Johansson B (2006) Characterization of DNA damage in yeast apoptosis induced by hydrogen peroxide, acetic acid, and hyperosmotic shock. Mol Biol Cell 17:4584–4591

    Article  PubMed  CAS  Google Scholar 

  • Richter C, Gogvadze V, Laffranchi R, Schlapbach R, Schweizer M, Suter M, Walter P, Yaffee M (1995) Oxidants in mitochondria: from physiology to diseases. Biochim Biophys Acta 1271:67–74

    Article  PubMed  Google Scholar 

  • Riedl SJ, Salvesen GS (2007) The apoptosome: signalling platform of cell death. Nat Rev Mol Cell Biol 8:405–413

    Article  PubMed  CAS  Google Scholar 

  • Rolland F, Winderickx J, Thevelein JM (2002) Glucose-sensing and -signalling mechanisms in yeast. FEMS Yeast Res 2:183–201

    PubMed  CAS  Google Scholar 

  • Roosen J, Engelen K, Marchal K, Mathys J, Griffioen G, Cameroni E, Thevelein JM, De Virgilio C, De Moor B, Winderickx J (2005) PKA and Sch9 control a molecular switch important for the proper adaptation to nutrient availability. Mol Microbiol 55:862–880

    Article  PubMed  CAS  Google Scholar 

  • Scheckhuber CQ, Mitterbauer R, Osiewacz HD (2009) Molecular basis of and interference into degenerative processes in fungi: potential relevance for improving biotechnological performance of microorganisms. Appl Microbiol Biotechnol 85:27–35

    Article  PubMed  CAS  Google Scholar 

  • Schuller C, Brewster JL, Alexander MR, Gustin MC, Ruis H (1994) The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. EMBO J 13:4382–4389

    PubMed  CAS  Google Scholar 

  • Schuller C, Mamnun YM, Mollapour M, Krapf G, Schuster M, Bauer BE, Piper PW, Kuchler K (2004) Global phenotypic analysis and transcriptional profiling defines the weak acid stress response regulon in Saccharomyces cerevisiae. Mol Biol Cell 15:706–720

    Article  PubMed  Google Scholar 

  • Severin FF, Meer MV, Smirnova EA, Knorre DA, Skulachev VP (2008) Natural causes of programmed death of yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1783:1350–1353

    Article  PubMed  CAS  Google Scholar 

  • Silva RD, Sotoca R, Johansson B, Ludovico P, Sansonetty F, Silva MT, Peinado JM, Corte-Real M (2005) Hyperosmotic stress induces metacaspase- and mitochondria-dependent apoptosis in Saccharomyces cerevisiae. Mol Microbiol 58:824–834

    Article  PubMed  CAS  Google Scholar 

  • Skulachev VP (1998) Cytochrome c in the apoptotic and antioxidant cascades. FEBS Lett 423:275–280

    Article  PubMed  CAS  Google Scholar 

  • Skulachev VP, Bakeeva LE, Chernyak BV, Domnina LV, Minin AA, Pletjushkina OY, Saprunova VB, Skulachev IV, Tsyplenkova VG, Vasiliev JM, Yaguzhinsky LS, Zorov DB (2004) Thread-grain transition of mitochondrial reticulum as a step of mitoptosis and apoptosis. Mol Cell Biochem 256–257:341–358

    Article  PubMed  Google Scholar 

  • Sokolov S, Knorre D, Smirnova E, Markova O, Pozniakovsky A, Skulachev V, Severin F (2006) Ysp2 mediates death of yeast induced by amiodarone or intracellular acidification. Biochim Biophys Acta 1757:1366–1370

    Article  PubMed  CAS  Google Scholar 

  • Sousa MJ, Rodrigues F, Corte-Real M, Leao C (1998) Mechanisms underlying the transport and intracellular metabolism of acetic acid in the presence of glucose in the yeast Zygosaccharomyces bailii. Microbiology 144(Pt 3):665–670

    Article  PubMed  CAS  Google Scholar 

  • Stratford M, Anslow PA (1996) Comparison of the inhibitory action on Saccharomyces cerevisiae of weak-acid preservatives, uncouplers, and medium-chain fatty acids. FEMS Microbiol Lett 142:53–58

    Article  PubMed  CAS  Google Scholar 

  • Stratford M, Anslow PA (1998) Evidence that sorbic acid does not inhibit yeast as a classic ‘weak acid preservative’. Lett Appl Microbiol 27:203–206

    Article  PubMed  CAS  Google Scholar 

  • Sundstrom JF, Vaculova A, Smertenko AP, Savenkov EI, Golovko A, Minina E, Tiwari BS, Rodriguez-Nieto S, Zamyatnin AA Jr, Valineva T, Saarikettu J, Frilander MJ, Suarez MF, Zavialov A, Stahl U, Hussey PJ, Silvennoinen O, Sundberg E, Zhivotovsky B, Bozhkov PV (2009) Tudor staphylococcal nuclease is an evolutionarily conserved component of the programmed cell death degradome. Nat Cell Biol 11:1347–1354

    Article  PubMed  Google Scholar 

  • Urban J, Soulard A, Huber A, Lippman S, Mukhopadhyay D, Deloche O, Wanke V, Anrather D, Ammerer G, Riezman H, Broach JR, De Virgilio C, Hall MN, Loewith R (2007) Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell 26:663–674

    Article  PubMed  CAS  Google Scholar 

  • Uren AG, O’Rourke K, Aravind LA, Pisabarro MT, Seshagiri S, Koonin EV, Dixit VM (2000) Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 6:961–967

    PubMed  CAS  Google Scholar 

  • Vachova L, Palkova Z (2005) Physiological regulation of yeast cell death in multicellular colonies is triggered by ammonia. J Cell Biol 169:711–717

    Article  PubMed  CAS  Google Scholar 

  • Valenti D, Vacca RA, Guaragnella N, Passarella S, Marra E, Giannattasio S (2008) A transient proteasome activation is needed for acetic acid-induced programmed cell death to occur in Saccharomyces cerevisiae. FEMS Yeast Res 8:400–404

    Article  PubMed  CAS  Google Scholar 

  • Vilela-Moura A, Schuller D, Mendes-Faia A, Corte-Real M (2008) Reduction of volatile acidity of wines by selected yeast strains. Appl Microbiol Biotechnol 80:881–890

    Article  PubMed  CAS  Google Scholar 

  • Watanabe N, Lam E (2005) Two Arabidopsis metacaspases AtMCP1b and AtMCP2b are arginine/lysine-specific cysteine proteases and activate apoptosis-like cell death in yeast. J Biol Chem 280:14691–14699

    Article  PubMed  CAS  Google Scholar 

  • Wissing S, Ludovico P, Herker E, Buttner S, Engelhardt SM, Decker T, Link A, Proksch A, Rodrigues F, Corte-Real M, Frohlich KU, Manns J, Cande C, Sigrist SJ, Kroemer G, Madeo F (2004) An AIF orthologue regulates apoptosis in yeast. J Cell Biol 166:969–974

    Article  PubMed  CAS  Google Scholar 

  • Yu L, Wan F, Dutta S, Welsh S, Liu Z, Freundt E, Baehrecke EH, Lenardo M (2006) Autophagic programmed cell death by selective catalase degradation. Proc Natl Acad Sci USA 103:4952–4957

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Salvatore Passarella for critical reading of the manuscript. This work was financially supported by a grant from Fondazione Cassa di Risparmio di Puglia and Program FIRB-MERIT [1-RBNE08HWLZ_012] and [1-RBNE08YFN3_005].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Giannattasio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Giannattasio, S., Guaragnella, N., Marra, E. (2012). Molecular Mechanisms of Programmed Cell Death Induced by Acetic Acid in Saccharomyces cerevisiae . In: Liu, Z. (eds) Microbial Stress Tolerance for Biofuels. Microbiology Monographs, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21467-7_3

Download citation

Publish with us

Policies and ethics