Skip to main content

Design and Implementation of Clinical Trials of Ion Beam Therapy

  • Chapter
  • First Online:
Ion Beam Therapy

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL,volume 320))

  • 1988 Accesses

Abstract

Design and implementation of clinical trials are complex even when those trials involve established technologies. Ion beam therapy (IBT) imposes additional requirements including sufficient institutional experience using ions for treatment, credentialing of institutions, formulating hypotheses of interest to investigators and to patients, and securing funding from national and private agencies. The effort, though, is very important to the future of radiation oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.J. Nass, H.L. Moses, J. Mendelsohn (eds.), A National Cancer Clinical Trials System for the 21st Century: Reinvigorating the NCI Cooperative Group Program (National Academies, Washington, DC, April 2010). http://books.nap.edu/catalog/12879.html

  2. J.P. Grutters, M. Pijls-Johannesma, D.D. Ruysscher, et al., The cost-effectiveness of particle therapy in non-small cell lung cancer: exploring decision uncertainty and areas for future research. Cancer Treat. Rev. 36, 468–476 (2010)

    Article  Google Scholar 

  3. M. Brada, M. Pijls-Johannesma, D. De Ruysscher, Proton therapy in clinical practice: current clinical evidence. Cancer J. 15, 319–324 (2009)

    Article  Google Scholar 

  4. M.D. Wang, Sample size reestimation by Bayesian prediction. Biomet. J. 49, 365–377 (2007)

    Article  Google Scholar 

  5. P.F. Thall, J.D. Cook, E.H. Estey, Adaptive dose selection using efficacy-toxicity trade-offs: illustrations and practical considerations. J. Biopharm. Stat. 16, 623–638 (2006)

    Article  MathSciNet  Google Scholar 

  6. I. Turesson, The progression rate of late radiation effects in normal tissue and its impact on dose-response relationships. Radiother. Oncol. 15, 217–226 (1989)

    Article  Google Scholar 

  7. J.D. Fontenot, A.K. Lee, W.D. Newhauser, Risk of secondary malignant neoplasms from proton therapy and intensity-modulated X-ray therapy for early-stage prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 74, 616–622 (2009)

    Article  Google Scholar 

  8. R.E. Upshur, The ethics of alpha: reflections on statistics, evidence and values in medicine. Theor. Med. Bioeth. 22, 565–576 (2001)

    Article  Google Scholar 

  9. G. Guyatt, R. Drummond, Part 1. The Basics: Using the Medical Literature. 1A. Introduction: The Philosophy of Evidence-Based Medicine, in Users’ Guides to the Medical Literature: A Manual for Evidence-Based Clinical Practice, ed. by G. Guyatt, R. Drummond. (American Medical Association, Chicago, 2002), pp. 3–12

    Google Scholar 

  10. S. West, V. King, T.S. Carey, et al., Systems to Rate the Strength of Scientific Evidence (Agency for Healthcare Research and Quality, AHRQ publication 02-E016, Rockville, MD, 2002), pp. 64–88

    Google Scholar 

  11. R. Harbour, J. Miller, A new system for grading recommendations in evidence based guidelines. Br. Med. J. 323, 334–336 (2001)

    Article  Google Scholar 

  12. B. Phillips, C. Ball, D. Sackett, et al, Levels of Evidence and Grades of Recommendations (Oxford Centre for Evidence-Based Medicine, Oxford, England). Available at: http://www.cebm.net/index.aspx?o=1025. Accessed 4 Jun 2010

  13. D. Atkins, D. Best, P.A. Briss, et al, Grading quality of evidence and strength of recommendations. Br. Med. J. 328, 1490 (2004)

    Article  Google Scholar 

  14. V.M. Montori, G.H. Guyatt, Progress in evidence-based medicine. J. Am. Med. Assoc. 300, 1814–1816 (2008)

    Article  Google Scholar 

  15. J.E. Tepper, Protons and parachutes. J. Clin. Oncol. 26, 2436–2437 (2008)

    Article  Google Scholar 

  16. A. Pollack, G.K. Zagars, G. Starkschall, et al., Prostate cancer radiation dose response: results of the M.D. Anderson phase III randomized trial. Int. J. Radiat. Oncol. Biol. Phys. 53, 1097–1105 (2002)

    Google Scholar 

  17. D.A. Kuban, S.L. Tucker, L. Dong, et al., Long-term results of the M. D. Anderson randomized dose-escalation trial for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 70, 67–74 (2008)

    Google Scholar 

  18. D.P. Dearnaley, V.S. Khoo, A.R. Norman, et al., Comparison of radiation side-effects of conformal and conventional radiotherapy in prostate cancer: a randomised trial. Lancet 353, 267–272 (1999)

    Article  Google Scholar 

  19. J. Michalski, J.A. Purdy, K. Winter, et al., Preliminary report of toxicity following 3D radiation therapy for prostate cancer on 3DOG/RTOG 9406. Int. J. Radiat. Oncol. Biol. Phys. 46, 391–402 (2000)

    Article  Google Scholar 

  20. E.K. Yeoh, R.H. Holloway, R.J. Fraser, et al., Anorectal function after three- versus two-dimensional radiation therapy for carcinoma of the prostate. Int. J. Radiat. Oncol. Biol. Phys. 73, 46–52 (2009)

    Article  Google Scholar 

  21. K.S. Chao, J.O. Deasy, J. Markman, et al., A prospective study of salivary function sparing in patients with head-and-neck cancers receiving intensity-modulated or three-dimensional radiation therapy: initial results. Int. J. Radiat. Oncol. Biol. Phys. 49, 907–916 (2001)

    Article  Google Scholar 

  22. C.M. Nutting, D.J. Convery, V.P. Cosgrove, et al., Reduction of small and large bowel irradiation using an optimized intensity-modulated pelvic radiotherapy technique in patients with prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 48, 649–656 (2000)

    Article  Google Scholar 

  23. M.J. Zelefsky, Z.V. Fuks, M. Hunt, et al., High dose intensity modulated radiation therapy for prostate cancer: early toxicity and biochemical outcome in 772 patients. Int. J. Radiat. Oncol. Biol. Phys. 53, 1111–1116 (2002)

    Article  Google Scholar 

  24. A.L. Zietman, M.L. DeSilvio, J.D. Slater, et al., Comparison of conventional-dose vs high-dose conformal radiation therapy in clinically localized adenocarcinoma of the prostate. J. Am. Med. Assoc. 294, 1233–1239 (2005)

    Article  Google Scholar 

  25. W.U. Shipley, L.J. Verhey, J.E. Munzenrider, et al., Advanced prostate cancer: the results of a randomized comparative trial of high dose irradiation boosting with conformal protons compared with conventional dose irradiation using photons alone. Int. J. Radiat. Oncol. Biol. Phys. 32, 3–12 (1995)

    Article  Google Scholar 

  26. J.A. Talcott, C. Rossi, W.U. Shipley, et al., Patient-reported long-term outcomes after conventional and high-dose combined proton and photon radiation for early prostate cancer. J. Am. Med. Assoc. 303, 1046–1053 (2010)

    Article  Google Scholar 

  27. P.L. Nguyen, A. Trofimov, A.L. Zietman, Proton-beam vs intensity-modulated radiation therapy: which is best for treating prostate cancer? Oncology 22, 748–754, discussion 754, 757 (2008)

    Google Scholar 

  28. D.J. Brenner, R.E. Curtis, E.J. Hall, et al., Second malignancies in prostate carcinoma patients after radiotherapy compared with surgery. Cancer 88, 398–406 (2000)

    Article  Google Scholar 

  29. W.J. Curran Jr., Evolving chemoradiation treatment strategies for locally advanced non-small-cell lung cancer. Oncology 17(Suppl 13), S7–S14 (2003)

    Google Scholar 

  30. W.J. Curran Jr, R. Paulus, C.J. Langer, et al., Sequential vs concurrent chemoradiation for stage III non-small cell lung cancer: randomized phase III trial RTOG 9410. J. Natl. Cancer Inst. 8 September 2011 (epub ahead of print)

    Google Scholar 

  31. K. Furuse, M. Fukuoka, M. Kawahara, et al., Phase III study of concurrent versus sequential thoracic radiotherapy in combination with mitomycin, vindesine, and cisplatin in unresectable stage III non-small cell lung cancer. J. Clin. Oncol. 17, 2692–2699 (1999)

    Google Scholar 

  32. P. Zatloukal, L. Petruzelka, M. Zemanova, et al., Concurrent versus sequential chemoradiotherapy with cisplatin and vinorelbine in locally advanced non-small cell lung cancer: a randomized study. Lung Cancer 46, 87–98 (2004)

    Article  Google Scholar 

  33. R.M. Huber, M. Flentje, M. Schmidt, et al., Simultaneous chemotherapy compared with radiotherapy alone after induction chemotherapy in inoperable stage IIIA or IIIB non-small cell lung cancer: study CTRT99/97 by the Bronchial Carcinoma Therapy Group. J. Clin. Oncol. 24, 4397–4404 (2006)

    Article  Google Scholar 

  34. Z. Liao, R. Komaki, H.D. Thames, et al., Influence of technological advances on outcomes in patients with unresectable, locally advanced non-small cell lung cancer receiving concomitant chemoradiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 76, 775–781 (2010)

    Article  Google Scholar 

  35. S. Sjpal, R. Komaki, A. Tsao, et al., Early findings on toxicity of proton beam therapy with concurrent chemotherapy for nonsmall cell lung cancer. Cancer 117, 3004–3013 (2011)

    Article  Google Scholar 

  36. J.D. Bradley, J. Moughan, M.V. Graham, et al., A phase I/II radiation dose escalation study with concurrent chemotherapy for patients with inoperable stages I to III non-small-cell lung cancer: phase I results of RTOG 0117. Int. J. Radiat. Oncol. Biol. Phys. 77, 367–372 (2010)

    Article  Google Scholar 

  37. K. Akakura, H. Tsujii, S. Morita, et al, For the Working Group for Genitourinary Tumors, National Institute of Radiological Sciences. Phase I/II clinical trials of carbon ion therapy for prostate cancer. Prostate 58, 252–258 (2004)

    Google Scholar 

  38. S. Kato, T. Ohno, H. Tsujii, et al, for the Working Group of the Gynecological Tumor. Dose escalation study of carbon ion radiotherapy for locally advanced carcinoma of the uterine cervix. Int. J. Radiat. Oncol. Biol. Phys. 65, 388–397 (2006)

    Google Scholar 

  39. D. Schulz-Ertner, A. Nikoghosyan, B. Didinger, J. Debus, Carbon ion radiation therapy for chordomas and low grade chondrosarcomas -current status of the clinical trials at GSI. Radiother. Oncol. 73(Suppl 2), S53–S56 (2004)

    Article  Google Scholar 

  40. S.E. Combs, C. Hartmann, A. Nikoghosyan, et al., Carbon ion radiation therapy for high-risk meningiomas. Radiother. Oncol. 95, 54–59 (2010)

    Article  Google Scholar 

  41. S. Takahashi, T. Kawase, K. Yoshida, et al., Skull base chordomas: efficacy of surgery followed by carbon ion radiotherapy. Acta Neurochir. (Wien) 151, 759–769 (2009)

    Article  Google Scholar 

  42. J.E. Mizoe, A. Hasegawa, R. Takagi, et al., Carbon ion radiotherapy for skull base chordoma. Skull Base 19, 219–224 (2009)

    Article  Google Scholar 

  43. O. Gudjonsson, E. Blomquist, G. Nyberg, et al., Stereotactic irradiation of skull base meningiomas with high energy protons. Acta Neurochir. (Wien) 141, 933–940 (1999)

    Article  Google Scholar 

  44. F.J. Vernimmen, J.K. Harris, J.A. Wilson, et al., Stereotactic proton beam therapy of skull base meningiomas, Int. J. Radiat. Oncol. Biol. Phys. 49, 99–105 (2001)

    Article  Google Scholar 

  45. Y. Hishikawa, Y. Oda, H. Mayahara, et al., Status of the clinical work at Hyogo. Radiother. Oncol. 73(Suppl 2), S38–S40 (2004)

    Article  Google Scholar 

  46. B. Jones, Joint symposium 2009 on carbon ion radiotherapy. Br. J. Radiol. 82, 884–889 (2009)

    Article  Google Scholar 

  47. J.P.C. Grutters, A.G.H. Kessels, M. Pijls-Johannesma, et al., Comparison of the effectiveness of radiotherapy with photons, protons, and carbon ions for non-small cell lung cancer: a meta-analysis. Radiother. Oncol. 95, 32–40 (2010)

    Article  Google Scholar 

  48. B. Freedman, Equipoise and the ethics of clinical research. N. Engl. J. Med. 317, 141–145 (1987)

    Article  Google Scholar 

  49. R.J. Lilford, J. Jackson, Equipoise and the ethics of randomization. J. Roy. Soc. Med. 88, 552–559 (1995)

    Google Scholar 

  50. A. Bill-Axelson, L. Holmberg, M. Ruutu, et al., Radical prostatectomy versus watchful waiting in early prostate cancer. N. Engl. J. Med. 352,1977–1984 (2005)

    Article  Google Scholar 

  51. M.E. Ray, K. Bae, M.H.A. Hussain, et al., Potential surrogate endpoints for prostate cancer survival: analysis of a phase III randomized trial. J. Natl. Cancer Inst. 101, 228–236 (2009)

    Article  Google Scholar 

  52. C.T. Lee, S.D. Bilton, R.M. Famiglietti, et al., Treatment planning with protons for pediatric retinoblastoma, medulloblastoma, and pelvic sarcoma: how do protons compare with other conformal techniques? Int. J. Radiat. Oncol. Biol. Phys. 63, 362–372 (2005)

    Article  Google Scholar 

  53. J. Lundkvist, M. Ekman, S.R. Ericsson, et al., Proton therapy of cancer: potential clinical advantages and cost-effectiveness. Acta Oncol. 44, 850–861 (2005)

    Article  Google Scholar 

  54. J. Lundkvist, M. Ekman, S.R. Ericsson, et al., Cost-effectiveness of proton radiation in the treatment of childhood medulloblastoma. Cancer 103, 793–801 (2005)

    Article  Google Scholar 

  55. J. Lundkvist, M. Ekman, S.R. Ericsson, et al., Economic evaluation of proton radiation therapy in the treatment of breast cancer. Radiother. Oncol. 75,179–185 (2005)

    Article  Google Scholar 

  56. M. Goitein, J.D. Cox, Should randomized clinical trials be required for proton radiotherapy? J. Clin. Oncol. 26, 175–176 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James D. Cox .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cox, J.D. (2012). Design and Implementation of Clinical Trials of Ion Beam Therapy. In: Linz, U. (eds) Ion Beam Therapy. Biological and Medical Physics, Biomedical Engineering, vol 320. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21414-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21414-1_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21413-4

  • Online ISBN: 978-3-642-21414-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics