Skip to main content

On the Biological Plausibility of Artificial Metaplasticity

  • Conference paper
Foundations on Natural and Artificial Computation (IWINAC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6686))

  • 1080 Accesses

Abstract

The training algorithm studied in this paper is inspired by the biological metaplasticity property of neurons. Tested on different multidisciplinary applications, it achieves a more efficient training and improves Artificial Neural Network Performance. The algorithm has been recently proposed for Artificial Neural Networks in general, although for the purpose of discussing its biological plausibility, a Multilayer Perceptron has been used. During the training phase, the artificial metaplasticity multilayer perceptron could be considered a new probabilistic version of the presynaptic rule, as during the training phase the algorithm assigns higher values for updating the weights in the less probable activations than in the ones with higher probability.

This research has been supported by Group for Automation in Signal and Communications, GASC/UPM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andina, D., Alvarez-Vellisco, A., Jevtic, A., Fombellida, J.: Artificial metaplasticity can improve artificial neural network learning. In: Intelligent Automation and Soft Computing, SI on Signal Processing and Soft Computing, vol. 15, pp. 683–696 (2009), ISSN: 1079-8587

    Google Scholar 

  2. Abraham, W.C.: Activity-dependent regulation of synaptic plasticity (metaplasticity) in the hippocampus. In: Kato, N. (ed.) The Hippocampus: Functions and Clinical Relevance, pp. 15–26. Elsevier, Amsterdam (1996)

    Google Scholar 

  3. Abraham, W.C., Bear, M.F.: Metaplasticity: The plasticity of synaptic plasticity. Trends in Neurosciences 19, 126–130 (1996), doi:10.1016/S0166-2236(96)80018-X

    Article  Google Scholar 

  4. Kinto, E., Del-Moral-Hernandez, E., Marcano-Cedeño, A., Ropero-Pelaez, J.: A preliminary neural model for movement direction recognition based on biologically plausible plasticity rules. In: Proc. 2nd Int. Work-Conf. on the Interplay between Natural and Artificial Computation, Lecture Notes in Computer Science, pp. 628–636. Springer, Berlin (2007)

    Google Scholar 

  5. Chiappalone, M., Vato, A., Berdondini, L., Koudelka, M., Martinoia, S.: Network Dynamics and Synchronous Activity in Cultured Cortical Neurons. Int J. Neural Syst. 17(2), 87–103 (2007)

    Article  Google Scholar 

  6. Ropero-Pelaez, J., Piqueira, J.R.: Biological clues for up-to-date artificial neurons. In: Computational Intelligence for Engineering and Manufacturing, pp. 131–146. Springer, Heidelberg (2007)

    Google Scholar 

  7. Bolle, D., Heylen, R.: Adaptive Thresholds for Neural Networks with Synaptic Noise. Int J. Neural Syst. 17(4), 241–252 (2007)

    Article  Google Scholar 

  8. Abraham, W.C.: Metaplasticity: tuning synapses and networks for plasticity. Nature Reviews Neuroscience 9, 387–399 (2008), doi:10.1038/nrn2356.

    Article  Google Scholar 

  9. Daoudal, G., Debanne, D.: Long-Term Plasticity of Intrinsic Excitability: Learning Rules and Mechanisms. Learning & Memory. Nature Reviews Neuroscience 10, 456–465 (2003), doi:10.1101/lm.65303

    Google Scholar 

  10. Neves, G., Cooke, S.F., Bliss, T.V.: Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nature Rev. Neurosci. 9, 65–75 (2008), doi:10.1038/nrn2303.

    Article  Google Scholar 

  11. Hebb, D.O.: The Organization of Behavior. In: Mahwah, N.J. (ed.) Reedition of the 1949 original (2002) ISBN-10: 0805843000, ISBN-13: 978-0805843002

    Google Scholar 

  12. Cudmore, R.H., Turrigiano, G.G.: Long-Term Potentiation of Intrinsic Excitability in LV Visual Cortical Neurons. Journal Neurophysiology 92, 341–348 (2004), doi:10.1152/jn.01059.2003.

    Article  Google Scholar 

  13. Monteiro, J.L., Lobo-Netto, M., Andina, D., Pelaez, J.R.: Using Neural Networks to Simulate the Alzheimer’s Disease. In: Davis, C.G., Yeh, R.T. (eds.) Proc. World Automation Congress, Hawaii, HI, USA, pp. 1–6 (2008) ISBN: 978-1-889335-38-4. INSPEC Accession Number: 10411864

    Google Scholar 

  14. Shannon, C.E.: A mathematical theory of communication. The Bell System Technical Journal 27, 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  15. Andina, D., Pham, D.T. (eds.): Computational Intelligence for Engineering and Manufacturing. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  16. Rucky, D.W., Rogers, S.K., Kabrisk, M., Oxley, M.E., Suter, B.W.: The multi-layer perceptron as an approximation to a Bayes optimal discrimination function. IEEE Transactions on Neural Networks 1, 296–298 (1990), doi:10.1109/72.80266.

    Article  Google Scholar 

  17. Marcano-Cedeño, A., Álvarez-Vellisco, A., Andina, D.: Artificial metaplasticity MLP applied to image classification. In: Proc. 7th Int. Conf. on Industrial Informatics, Cardiff, United Kingdom, pp. 650–653 (2009), doi:10.1109/INDIN.2009.5195879.

    Google Scholar 

  18. Marcano-Cedeño, A., Quintanilla-DomÍnguez, J., Andina, D.: Wood Defects Classification Using Artificial Metaplasticity Neural Network. In: Proc. 35th Annua Conf. on of the IEEE Industrial Electronics Society, Porto, Portugal, pp. 3422–3427 (2009), doi:10.1109/IECON.2009.5415189

    Google Scholar 

  19. De Long, E., Clarke-Pearson, D.: Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 44, 837–845 (1988)

    Article  MATH  Google Scholar 

  20. Egan, J.: Signal Detection Theory and ROC analysis. In: Series in Cognition and Perception, SAcademic Press, New York (1975)

    Google Scholar 

  21. Bienestock, E.L., Cooper, L.N., Munro, P.W.: Theory of the developement of neuron selectivity: orientation specifity and binocular interaction in visual cortex. J. Neurosci. 2(1), 32–48 (1982)

    Google Scholar 

  22. Abraham, W.C.: Metaplasticity: tuning synapses and networks for plasticity. In: Nature Reviews/neuroscience, vol. 9, pp. 387–399. Nature Publishing Group ( May 2008)

    Google Scholar 

  23. Sejnowski, T.J.: Storing covariance with non linearly interacting neurons. J. Math. Biol. 4, 303–321 (1977)

    Article  Google Scholar 

  24. Sejnowski, T.J., Chattarji, S., Stanton, P.K.: Homosynaptic long-term depression in hippocampus and neocortex. Seminars in the Neurosciences 2, 355–363 (1990)

    Article  Google Scholar 

  25. Abraham, W.C., Bear, W.C.: Metaplasticity the plasticity of synaptic plasticity. Trends Neurosci. 19, 126–130 (1996)

    Article  Google Scholar 

  26. Mockett, B., Coussens, C., Abraham, W.C.: NMDA receptor-mediated metaplasticity during the induction of long-term depression by low-frequency stimulation. European Journal of Neuroscience 15, 1819–1826 (2002)

    Article  Google Scholar 

  27. Artola, A., Singer, W.: Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends Neurosci. 16, 480–487 (1993)

    Article  Google Scholar 

  28. Marcano-Cedeño, A., Quintanilla-Domínguez, J., Andina, D.: Breast Cancer Classification applying Artificial Metaplasticity Algorithm. In: Neurocomputing, Corrected Proof, pp. 925–2312. Elsevier, Amsterdam (2010), (in press) doi:10.1016/j.neucom.2010.07.019

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Andina, D., Ropero-Peláez, J. (2011). On the Biological Plausibility of Artificial Metaplasticity. In: Ferrández, J.M., Álvarez Sánchez, J.R., de la Paz, F., Toledo, F.J. (eds) Foundations on Natural and Artificial Computation. IWINAC 2011. Lecture Notes in Computer Science, vol 6686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21344-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21344-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21343-4

  • Online ISBN: 978-3-642-21344-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics