Skip to main content

Introduction to Biofilms

  • Chapter
  • First Online:
Biofilms and Veterinary Medicine

Part of the book series: Springer Series on Biofilms ((BIOFILMS,volume 6))

Abstract

In the seventeenth century, a dry-goods merchant named Antonie van Leeuwenhoek first observed “animalcules” swarming on living and dead matter. Leeuwenhoek’s curiosity and inventiveness were remarkable; he discovered these “animalcules” in the tartar on his own teeth and even after meticulous cleansing, the remaining opaque deposits isolated between his teeth were still “as thick as if it were batter”. These deposits contained a mat of various forms of “animalcules” that we now know were the bacteria of dental plaque. It is reasonable to suggest that this early study of dental plaque was the first documented evidence of the existence of microbial biofilms. Today, we generally define such biofilms as microbial communities adhered to a substratum and encased within an extracellular polymeric substance (EPS) produced by the microbial cells themselves. Biofilms may form on a wide variety of surfaces, including natural aquatic systems living tissues, indwelling medical devices and industrial/potable water system piping. The vast majority of microbes grow as biofilms in aqueous environments. These biofilms can be benign or pathogenic, releasing harmful products and toxins, which become encased within the biofilm matrix. Biofilm formation is a phenomenon that occurs in both natural and man-made environments under diverse conditions, occurring on most moist surfaces, plant roots and nearly every living animal. Biofilms may exist as beneficial epithilic communities in rivers and streams, wastewater treatment plant trickling beds or in the alimentary canal of mammals. Given the prevalence of biofilms in natural environments, it is not surprising that these growth forms are responsible for infection in humans and animals. In humans, biofilms have been linked with numerous conditions and equally in animals equivalent infections may occur.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderl JN, Zahller J, Roe F, Stewart PS (2003) Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 47:1251–1256

    Article  PubMed  CAS  Google Scholar 

  • Anwar H, Strap JL, Costerton JW (1992a) Establishment of aging biofilms: possible mechanism of bacterial resistance to antimicrobial therapy. Antimicrob Agents Chemother 36:1347–1351

    PubMed  CAS  Google Scholar 

  • Anwar H, Strap JL, Chen K, Costerton JW (1992b) Dynamic interactions of biofilms of mucoid Pseudomonas aeruginosa with tobramycin and piperacillin. Antimicrob Agents Chemother 36:1208–1214

    PubMed  CAS  Google Scholar 

  • Baier RE (1980) Substrate influence on adhesion of microorganisms and their resultant new surface properties. In: Bitton G, Marshall KC (eds) Adsorption of microorganisms to surfaces. Wiley, New York, pp 59–104

    Google Scholar 

  • Baier RE (1984) Initial events in microbial film formation. In: Costlow JD, Tipper RC (eds) Marine biodetermination: an interdisciplinary approach. E & FN Spon, London, pp 57–62

    Google Scholar 

  • Bashan Y, Levanony H (1988) Active attachment of Azospirillum brasilense Cd to quartz sand and to a light-textured soil by protein bridging. J Gen Microbiol 134:2269–2279

    CAS  Google Scholar 

  • Bayston R (1999) Medical problems due to biofilms: clinical impact, aetiology, molecular pathogenesis, treatment and prevention. In: Wilson M, Newman HN (eds) Dental plaque revisited: oral biofilms in health and disease. BioLine, Cardiff, pp 111–124

    Google Scholar 

  • Beech IB, Gaylarde CC (1989) Adhesion of Desulfovibrio desulfuricans and Pseudomonas fluorescens to mild steel surfaces. J Appl Bacteriol 67:2017

    Google Scholar 

  • Bendinger B, Rijnaarts HHM, Altendorf K, Zehnder AJB (1993) Physicochemical cell surface and adhesive properties of coryneform bacteria related to the presence and chain length of mycolic acids. Appl Environ Microbiol 59:3973–3977

    PubMed  CAS  Google Scholar 

  • Blenkinsopp SA, Costerton JW (1991) Understanding bacterial biofilms. Trends Biotechnol 9:138–143

    Article  Google Scholar 

  • Braunwald E (1997) Valvular heart disease. In: Braunwald E (ed) Heart disease, vol 2. W.B. Saunders, Philadelphia

    Google Scholar 

  • Brooun A, Liu S, Lewis K (2000) A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 44:640–646

    Article  PubMed  CAS  Google Scholar 

  • Brown MRW, Barker J (1999) Unexplored reservoirs of pathogenic bacteria: protozoa and biofilms. Trends Microbiol 7:46–50

    Article  PubMed  CAS  Google Scholar 

  • Brown CM, Ellwood DC, Hunter JR (1977) Growth of bacteria at surfaces: influence of nutrient limitations. FEMS Microbiol Lett 1:163–165

    Article  CAS  Google Scholar 

  • Bryers JD (1984) Biofilm formation and chemostat dynamics: pure and mixed culture considerations. Biotechnol Bioeng 26:948–958

    Article  PubMed  CAS  Google Scholar 

  • Bryers JD (1987) Biologically active surfaces; processes governing the formation and persistence of biofilms. Biotechnology 3:57–68

    CAS  Google Scholar 

  • Bullitt R, Makowski L (1995) Structural polymorphism of bacterial adhesion pili. Nature 373:164–167

    Article  PubMed  CAS  Google Scholar 

  • Busscher HJ, Weerkamp A (1987) Specific and non-specific interactions: role in bacterial adhesion to solid substrata. FEMS Microbiol Rev 46:165–173

    Article  CAS  Google Scholar 

  • Buswell CM, Herlihy YM, Marsh PD, Keevil CW, Leach SA (1997) Coaggregation amongst aquatic biofilm bacteria. J Appl Microbiol 83:477–484

    Article  Google Scholar 

  • Caldwell DE, Korber DR, Lawrence JR (1992) Confocal laser microscopy and digital image analysis in microbial ecology. Adv Microb Ecol 12:1–67

    CAS  Google Scholar 

  • Carpentier B, Cerf O (1993) Biofilms and their consequences, with particular reference to hygiene in the food industry. J Appl Bacteriol 75:499–511

    PubMed  CAS  Google Scholar 

  • Carrel T, Nguyen T, Kipfer B, Althaus U (1998) Definitive cure of recurrent prosthetic endocarditis using silver-coated St. Jude medical heart valves: a preliminary case report. J Heart Valve Dis 7(5):531–533

    PubMed  CAS  Google Scholar 

  • Chamberlain AHL (1992) The role of adsorbed layers in bacterial adhesion. In: Melo LF, Bott TR, Fletcher M, Capdeville B (eds) Biofilms-science and technology. Kluwer Academic, Dordrecht, pp 59–67

    Google Scholar 

  • Characklis WG (1973) Attached microbial growths-II. Frictional resistance due to microbial slimes. Water Res 7:1249–1258

    Article  CAS  Google Scholar 

  • Characklis WG (1981) Fouling biofilm development: a process analysis. Biotechnol Bioeng 23:1923–1960

    Article  CAS  Google Scholar 

  • Characklis WG, Cooksey KE (1983) Biofilms and microbial fouling. Adv Appl Microbiol 29:93–138

    Article  CAS  Google Scholar 

  • Characklis WG, McFeters GA, Marshall KC (1990a) Physiological ecology of biofilm systems. In: Characklis WG, Marshall KC (eds) Biofilms. Wiley, New York, pp 341–393

    Google Scholar 

  • Characklis WG, Turakhia MH, Zelver N (1990b) Transfer and interfacial transport phenomena. In: Characklis WG, Marshall KC (eds) Biofilms. Wiley, New York, pp 265–340

    Google Scholar 

  • Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat 111:1119–1144

    Article  Google Scholar 

  • Corpe WA (1970) An acid polysaccharide produced by a primary film forming marine bacterium. Dev Ind Microbiol 11:402–412

    Google Scholar 

  • Corpe WA (1980) Microbial surface components involved in adsorption of microorganisms onto surfaces. In: Bitton G, Marshall KC (eds) Adsorption of microorganisms to surfaces. Wiley, New York, pp 105–144

    Google Scholar 

  • Costerton JW, Geesey GG (1979) In: Costerton JW, Colwell RR (eds) Native aquatic bacteria: enumeration, activity, and ecology. ASTM Press, Philadelphia, pp 7–18

    Chapter  Google Scholar 

  • Costerton JW, Lappin-Scott HM (1989) Behaviour of bacterial biofilms. Am Soc Microbiol News 55:650–654

    Google Scholar 

  • Costerton JW, Lashen ES (1984) The influence of biofilm efficacy of biocides on corrosion-causing bacteria. Mater Performance 23:34–37

    Google Scholar 

  • Costerton JW, Geesey GG, Cheng K-J (1978) How bacteria stick. Sci Am 238:86–95

    Article  PubMed  CAS  Google Scholar 

  • Costerton JW, Irvin RT, Cheng KJ (1981) The bacterial glycocalyx in nature and disease. Annu Rev Microbiol 35:299–324

    Article  PubMed  CAS  Google Scholar 

  • Costerton JW, Cheng KJ, Geesey GG, Ladd TIM, Nickel JC, Dasgupta M, Marie TJ (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464

    Article  PubMed  CAS  Google Scholar 

  • Costerton JW, Lewandowski Z, de Beer D, Calwell D, Korber D, James G (1994) Biofilms, the customised microniches. J Bacteriol 176:2137–2142

    PubMed  CAS  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    Article  PubMed  CAS  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Article  PubMed  CAS  Google Scholar 

  • Crampton SE, Gerke C, Schnell NF, Nichols WW, Gotz F (1999) The intacellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun 67:5427–5433

    Google Scholar 

  • Danielsson A, Norkrans B, Bjornsson A (1977) On bacterial adhesion – the effect of certain enzymes on adhered cells in a marine Pseudomonas sp. Bot Mar 20:13–17

    Article  CAS  Google Scholar 

  • Davey ME, O’Toole A (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867

    Article  PubMed  CAS  Google Scholar 

  • Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114–122

    Article  PubMed  CAS  Google Scholar 

  • de Beer D, Stoodley P, Roe F, Lewandowski Z (1994) Effects of biofilm structures on oxygen distribution and mass transfer. Biotechnol Bioeng 43:1131–1138

    Article  PubMed  Google Scholar 

  • De Kievit TR, Parkins MD, Gillis RJ, Srikumar R, Ceri H, Poole K, Iglewski BH, Storey DG (2001) Multidrug efflux pumps: expression patterns and contribution to antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 45:1761–1770

    Article  PubMed  Google Scholar 

  • Donlan R (2001) Biofilms and device-associated infections. Emerg Infect Dis 7:277–281

    Article  PubMed  CAS  Google Scholar 

  • Donlan R, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    Article  PubMed  CAS  Google Scholar 

  • Douglas LJ (2003) Candida biofilms and their role in infection. Trends Microbiol 11:30–36

    Article  PubMed  CAS  Google Scholar 

  • Dunne WM Jr (2002) Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 15:155–166

    Article  PubMed  CAS  Google Scholar 

  • Flemming H-C, Wingender J, Griegbe T, Mayer C (2000) Physico-chemical properties of biofilms. In: Evans LV (ed) Biofilms: recent advances in their study and control. Harwood Academic, Amsterdam, pp 19–34

    Google Scholar 

  • Fletcher M (1977) The effects of culture concentration and age, time, and temperature on bacterial attachment to polystyrene. Can J Microbiol 23:1–6

    Article  Google Scholar 

  • Fletcher M (1980) The question of passive versus active attachment mechanisms in non-specific bacterial adhesion. In: Berkeley RCW (ed) Microbial adhesion to surfaces. Horwood, Chichester, pp 67–78

    Google Scholar 

  • Fletcher M, Loeb GI (1979) The influence of substratum characteristics on the attachment of a marine Pseudomonas to solid surfaces. Appl Environ Microbiol 37:67–72

    PubMed  CAS  Google Scholar 

  • Fletcher M, Marshall KC (1982) Are solid surfaces of ecological significance to aquatic bacteria? Adv Microb Ecol 12:199–236

    Google Scholar 

  • Fredrickson AG (1977) Behaviour of mixed cultures of microorganisms. Annu Rev Microbiol 33:63–87

    Article  Google Scholar 

  • Fux CA, Costerton JW, Stewart PS, Stoodley P (2005) Survival strategies of infectious biofilms. Trends Microbiol 13:34–40

    Article  PubMed  CAS  Google Scholar 

  • Gilbert P, Das J, Foley I (1997) Biofilm susceptibility to antimicrobials. Adv Dent Res 11:160–167

    Article  PubMed  CAS  Google Scholar 

  • Habash M, Reid G (1999) Microbial biofilms: their development and significance for medical device-related infections. J Clin Pharmacol 39:887–898

    Article  PubMed  CAS  Google Scholar 

  • Hamilton WA (1987) Biofilm: microbial interaction and metabolic activities. In: Fletcher M, Gray TRG, Jones JG (eds) Ecology of microbial communities. Society for general microbiology symposium 41. Cambridge University Press, Cambridge, pp 361–387

    Google Scholar 

  • Hamilton WA, Characklis WG (1989) Relative activities of cells in suspension and in biofilms. In: Characklis WG, Wilderer PA (eds) Structure and function of biofilms. Wiley, New York, pp 199–219

    Google Scholar 

  • Harrison JJ, Turner RJ, Ceri H (2005) Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa. Environ Microbiol 7:981–994

    Article  PubMed  CAS  Google Scholar 

  • Heilmann C, Schweitzer O, Gerke C, Vanittanakom N, Mack D, Goetz F (1996) Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol Microbiol 20:1083–1091

    Article  PubMed  CAS  Google Scholar 

  • Heukelekian H, Heller A (1940) Relation between food concentration and surface for bacterial growth. J Bacteriol 40:547–558

    PubMed  CAS  Google Scholar 

  • Heurlier K, Denervaud V, Haas D (2006) Impact of quorum sensing on fitness of Pseudomonas aeruginosa. Int J Med Microbiol 296:93–102

    Article  PubMed  CAS  Google Scholar 

  • Hill KE, Davies CE, Wilson MJ, Stephens P, Harding KG, Thomas DW (2003) Molecular analysis of the microflora in chronic venous leg ulceration. J Med Microbiol 52:365–369

    Article  PubMed  CAS  Google Scholar 

  • Hofstad T (1992) Virulence factors in anaerobic bacteria. Eur J Clin Microbiol Infect Dis 11:1044–1048

    Article  PubMed  CAS  Google Scholar 

  • Hoyle BD, Costerton JW (1991) Bacterial resistance to antibiotics: the role of biofilms. Prog Drug Res 37:91–105

    PubMed  CAS  Google Scholar 

  • Humphrey BA, Dickson MR, Marshall KC (1979) Physiochemical and in situ observations on the adhesion of gliding bacteria to surfaces. Arch Microbiol 120:231–238

    Article  CAS  Google Scholar 

  • Illingworth B, Tweden K, Schroeder R, Cameron J (1999) In vivo efficacy of silver-coated (Silzone) infection-resistant polyester fabric against a biofilm-producing bacteria. Staphylococcus epidermidis. J Heart Valve Dis 7:524–530

    Google Scholar 

  • James GA, Beaudette L, Costerton JW (1995) Interspecies bacterial interactions in biofilms. J Ind Microbiol 15:257–262

    Article  CAS  Google Scholar 

  • Jones F (2005) Quorum sensing. Microbiol Today:34–35

    Google Scholar 

  • Jones HC, Roth IL, Saunders WM III (1969) Electron microscopic study of a slime layer. J Bacteriol 99:316–325

    PubMed  CAS  Google Scholar 

  • Karchmer A, Gibbons G (1994) Infections of prosthetic heart valves and vascular grafts. In: Bisno AL, Waldovogel FA (eds) Infections associated with indwelling medical devices, 2nd edn. American Society for Microbiology, Washington, pp 213–249

    Google Scholar 

  • Keevil CW, Dowsett AB, Rogers J (1993) Legionella biofilms and their control. Society for Applied Bacteriology technical series: microbiofilms. Society for Applied Bacteriology, Bedford, pp 203–215

    Google Scholar 

  • Khardori N, Yassien M (1995) Biofilms in device-related infections. J Ind Microbiol Biotechnol 15:141–147

    CAS  Google Scholar 

  • Kolenbrander PE, Palmer RJ, Rickard AH, Jakubovics NS, Chalmers NI, Diaz PI (2006) Bacterial interactions and successions during plaque development. Periodontology 2000(42):47–79

    Article  Google Scholar 

  • König C, Schwank S, Blaser J (2001) Factors compromising antibiotic activity against biofilms of Staphylococcus epidermidis. Eur J Clin Microbiol Infect Dis 20:20–26

    Article  PubMed  Google Scholar 

  • Korber DR, Lawrence JR, Sutton B, Caldwell DE (1989) Effect of laminar flow velocity on the kinetics of surface recolonization by Mot+ and Mot- Pseudomonas fluorescens. Microb Ecol 18:1–19

    Article  Google Scholar 

  • Kumamoto CA, Marcelo DV (2005) Alternative Candida albicans lifestyles: growth on surfaces. Annu Rev Microbiol 59:113–133

    Article  PubMed  CAS  Google Scholar 

  • Lappin-Scott HM, Jass J, Costerton JW (1993) Microbial biofilm formation and characterisation. Society for Applied Bacteriology technical series No. 30. Society for Applied Bacteriology, Bedford

    Google Scholar 

  • Lawrence JR, Neu TR (1999) Confocal laser scanning microscopy for analysis of microbial biofilms. Meth Enzymol 310:131–144

    Article  PubMed  CAS  Google Scholar 

  • Lewandowski Z, Stoodley P, Roe F (1995) Internal mass transport in heterogeneous biofilms. Recent advances in corrosion/95, paper no. 222. NACE International, Houston

    Google Scholar 

  • Loeb GI, Neihof RA (1975) Marine conditioning films. Adv Chem Ser 145:319–335

    Article  CAS  Google Scholar 

  • Mack D, Nedelmann M, Krokotsch A, Schwarzkopf A, Heesemann J, Laufs R (1994) Characterization of transposon mutants of biofilm-producing Staphylococcus epidermidis impaired in the accumulative phase of biofilm production: genetic identification of a hexosamine-containing polysaccharide intercellular adhesin. Infect Immun 62:3244–3253

    PubMed  CAS  Google Scholar 

  • Mack D, Fischer W, Krokotsch A, Leopold K, Hartmann R, Egge H, Laufs R (1996) The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol 178:175–183

    PubMed  CAS  Google Scholar 

  • Mah T, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    Article  PubMed  CAS  Google Scholar 

  • Mah T, Pitts B, Pellock B, Walker GC, Stewart PS, O’Toole GA (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306–310

    Article  PubMed  CAS  Google Scholar 

  • Maira-Litran T, Allison DG, Gilbert P (2000) An evaluation of the potential of the multiple antibiotic resistance operon (mar) and the multidrug efflux pump acrAB to moderate resistance towards ciprofloxacin in Escherichia coli biofilms. J Antimicrob Chemother 45:789–795

    Article  PubMed  CAS  Google Scholar 

  • Marmur A, Ruckenstein E (1986) Gravity and cell adhesion. J Colloid Interface Sci 114:261–266

    Article  Google Scholar 

  • Marsh PD (1995) Dental plaque. In: Lappin-Scott HM, Costerton JW (eds) Microbial biofilms. Cambridge University Press, Cambridge, pp 282–300

    Chapter  Google Scholar 

  • Marshall KC (1992) Biofilms: a overview of bacterial adhesion, activity and control at surfaces. Am Soc Microbiol News 58:202–207

    Google Scholar 

  • Marshall KC, Stout R, Mitchell R (1971) Mechanism of the initial events in the sorption of marine bacteria to surfaces. J Gen Microbiol 68:337–348

    CAS  Google Scholar 

  • McEldowney S, Fletcher M (1988) Effect of pH, temperature, and growth conditions on the adhesion of a gliding bacterium and three nongliding bacteria to polystyrene. Microb Ecol 16:183–195

    Article  Google Scholar 

  • Mittelman MW (1996) Adhesion to biomaterials. In: Fletcher M (ed) Bacterial adhesion: molecular and ecological diversity. Wiley-Liss, New York, pp 89–127

    Google Scholar 

  • Moore PCL, Lindsay JA (2001) Genetic variation among hospital isolates of methicillin-sensitive Staphylococcus aureus: evidence for horizontal transfer of virulence genes. J Clin Microbiol 39:2760–2767

    Article  PubMed  CAS  Google Scholar 

  • Mulhall AB, Chapman RG, Crow RA (1988) Bacteriuria during indwelling urethral catheterization. J Hosp Infect 11:253–262

    Article  PubMed  CAS  Google Scholar 

  • Nemoto K, Hirota K, Ono T, Murakami K, Nagao D, Miyake Y (2000) Effect of Varidase (streptokinase) on biofilm formed by Staphylococcus aureus. Chemotherapy 46:111–115

    Article  PubMed  CAS  Google Scholar 

  • Palmer RJ, Sternberg C (1999) Modern microscopy in biofilm research: confocal microscopy and other approaches. Curr Opin Biotechnol 10:263–268

    Article  PubMed  CAS  Google Scholar 

  • Palmer R Jr, White DC (1997) Developmental biology of biofilms: implications for treatment and control. Trends Microbiol 5:435–440

    Article  PubMed  Google Scholar 

  • Parsek MR, Greenberg EP (2000) Acyl-homoserine lactone quorum sensing in Gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proc Natl Acad Sci USA 97:8789–8793

    Article  PubMed  CAS  Google Scholar 

  • Percival SL, Bowler PG (2004) Biofilms and their potential role in wound healing. Wounds 16:234–240

    Google Scholar 

  • Percival SL, Kite P (2007) Catheters and infection control. J Vasc Access 2:69–80

    Google Scholar 

  • Percival SL, Thomas JG (2009) Helicobacter pylori prevalence and transmission and role of biofilms. Water Health 7(3):469–477

    Article  Google Scholar 

  • Percival SL, Walker JT (1999) Biofilms and public health significance. Biofouling 14:99–115

    Article  Google Scholar 

  • Percival SL, Knapp JS, Wales DS, Edyvean RGJ (1999) The effect of flow and surface roughness on biofilm formation. J Microbiol Biotechnol 22:152–159

    CAS  Google Scholar 

  • Percival SL, Walker J, Hunter P (2000) Microbiological aspects of biofilms and drinking water. CRC Press, New York

    Book  Google Scholar 

  • Percival SL, Hegarty JH, McKay G, Reid D (2001) Helicobacter pylori in biofilms. In: Gilbert PG, Allison D, Walker JT, Brading M (eds) Biofilm community interactions: chance or necessity. Species consortia. Wiley, New York, pp 59–63

    Google Scholar 

  • Percival SL, Sabbuba NA, Kite P, Stickler DJ (2009) The effect of EDTA instillations on the rate of development of encrustation and biofilms in Foley catheters. Urol Res 37(4):205–209

    Article  PubMed  CAS  Google Scholar 

  • Percival SL, Thomas J, Williams D (2010) Biofilms and bacterial imbalances in chronic wounds: anti-Koch. Int Wound J 7(3):169–175

    Article  PubMed  Google Scholar 

  • Percival SL, Thomas J, Thomas D, Williams D (2011) Antimicrobial tolerance and role of biofilms and persister cells in wounds. Wound Repair Regen 19(1):1–9

    Article  PubMed  Google Scholar 

  • Powell MS, Slater NKH (1982) Removal rate of bacterial cells from glass surfaces by fluid shear. Biotechnol Bioeng 24:2527–2537

    Article  PubMed  CAS  Google Scholar 

  • Pringle JH, Fletcher M (1983) Influence of substratum wettability on attachment of freshwater bacteria to solid surfaces. Appl Environ Microbiol 45:811–817

    PubMed  CAS  Google Scholar 

  • Raad II, Sabbagh MF, Rand KH, Sherertz RJ (1992) Quantitative tip culture methods and the diagnosis of central venous catheter-related infections. Diagn Microbiol Infect Dis 15:13–20

    Article  PubMed  CAS  Google Scholar 

  • Ramage G, Martinez JP, Lopez-Ribot JL (2006) Candida biofilms on implanted biomaterials: a clinically significant problem. FEMS Yeast Res 6:979–986

    Article  PubMed  CAS  Google Scholar 

  • Reid G, McGroarty J, Angotti R, Cook R (1988) Lactobacillus inhibitor production against Escherichia coli and coaggregation ability with uropathogens. Can J Microbiol 34:344–351

    Article  PubMed  CAS  Google Scholar 

  • Rhoads DD, Wolcott RW, Cutting KF, Percival SL (2007) Evidence of biofilms in wounds and potential ramifications. In: Gilbert P, Allison D, Brading M, Pratten J, Spratt D, Upton M (eds) Biofilms: coming of age, vol 8. The Biofilm Club, pp. 131–143

    Google Scholar 

  • Rickard AH, Leach SA, Buswell CM, High NJ, Handley PS (2000) Coaggregation between aquatic bacteria is mediated by specific-growth-phase-dependent lectin-saccharide interactions. Appl Environ Microbiol 66:431–434

    Article  PubMed  CAS  Google Scholar 

  • Rickard AH, Leach SA, Hall LS, Buswell CM, High NJ, Handley PS (2002) Phylogenetic relationships and coaggregation ability of freshwater biofilm bacteria. Appl Environ Microbiol 68:3644–3650

    Article  PubMed  CAS  Google Scholar 

  • Rickard AH, Gilbert P, High NJ, Kolenbrander PE, Handley PS (2003a) Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol 11:94–100

    Article  PubMed  CAS  Google Scholar 

  • Rickard AH, McBain AJ, Ledder RG, Handley PS, Gilbert P (2003b) Coaggregation between freshwater bacteria within biofilm and planktonic communities. FEMS Microbiol Lett 220:133–140

    Article  PubMed  CAS  Google Scholar 

  • Rittle KH, Helmstetter CE, Meyer AE, Baier RE (1990) Escherichia coli retention on solid surfaces as functions of substratum surface energy and cell growth phase. Biofouling 2:121–130

    Article  Google Scholar 

  • Rittman BE (1989) The effect of shear stress on biofilm loss rate. Biotechnol Bioeng 24:501–506

    Article  Google Scholar 

  • Roberts ME, Stewart PS (2005) Modelling protection from antimicrobial agents in biofilms through the formation of persister cells. Microbiology 151:75–80

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg M, Kjelleberg S (1986) Hydrophobic interactions in bacterial adhesion. Adv Microb Ecol 9:353–393

    CAS  Google Scholar 

  • Saye DE (2007) Recurring and antimicrobial-resistant infections: considering the potential role of biofilms in clinical practice. Ostomy Wound Care Manage 53:46–48

    Google Scholar 

  • Spoering AL, Lewis K (2001) Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 183:6746–6751

    Article  PubMed  CAS  Google Scholar 

  • Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138

    Article  PubMed  CAS  Google Scholar 

  • Stewart PS, Camper AK, Handran SD, Huang CT, Warnecke M (1997) Spatial distribution and coexistence of Klebsiella pneumoniae and Pseudomonas aeruginosa in biofilms. Microb Ecol 33:2–10

    Article  PubMed  Google Scholar 

  • Stickler DJ (2002) Susceptibility of antibiotic-resistant Gram-negative bacteria to biocides: a perspective from the study of catheter biofilms. J Appl Microbiol 92:163S–170S

    Article  PubMed  Google Scholar 

  • Stickler D (2005) Urinary catheters: ideal sites for the development of biofilm communities. Microbiol Today:22–25.

    Google Scholar 

  • Stickler DJ, Morris NS, Winters C (1999) Simple physical model to study formation and physiology of biofilms on urethral catheters. Meth Enzymol 310:494–501

    Article  PubMed  CAS  Google Scholar 

  • Stoodley P, Boyle JD, Dodds I, Lappin-Scott HM (1997) Consensus model of biofilm structure. In: Biofilms: community interactions and control. Third meeting of the British Biofilm Club, Gregynog Hall, Powys, 26–28 September 1997, pp 1–9

    Google Scholar 

  • Sutherland IW (2001) The biofilm matrix: an immobilized but dynamic microbial environment. Trends Microbiol 9:222–227

    Article  PubMed  CAS  Google Scholar 

  • Tenke P, Riedl CR, Jones GL, Williams GJ, Stickler D, Nagy E (2004) Bacterial biofilm formation on urologic devices and heparin coating as preventive strategy. Int J Antimicrob Agents 23:67–74

    Article  CAS  Google Scholar 

  • Trautner BW, Darouiche RO (2004) Role of biofilm in catheter-associated urinary tract infection. Am J Infect Control 32:177–183

    Article  PubMed  Google Scholar 

  • Tunney MM, Jones DS, Gorman SP (1999) Biofilm and biofilm-related encrustations of urinary tract devices. In: Doyle RJ (ed) Methods in enzymology. Biofilms, vol 310. Academic, San Diego, pp 558–666

    Google Scholar 

  • Uhlinger DJ, White DC (1983) Relationship between physiological status and formation of extracellular polysaccharide glycocalyx in Pseudomonas atlantica. Appl Environ Microbiol 45:64–70

    PubMed  CAS  Google Scholar 

  • Van der Mei HC, Free RH, Elving GJ, Van Weissenbruch R, Albers FW, Busscher HJ (2000) Effect of probiotic bacteria on prevalence of yeasts in oropharyngeal biofilms on silicone rubber voice prostheses in vitro. J Med Microbiol 49:713–718

    PubMed  Google Scholar 

  • Vandevoorde L, Christiaens H, Verstraete W (1992) Prevalence of coaggregation reactions among chicken lactobacilli. J Appl Bacteriol 72:214–219

    PubMed  CAS  Google Scholar 

  • Vieira MJ, Oliveira R, Melo L, Pinheiro M, van der Mei H (1992) Adhesion of Pseudomonas fluorescens to metallic surfaces. J Dispers Sci Technol 13(4):437–445

    Article  CAS  Google Scholar 

  • Wahl M (1989) Marine epibiosis. 1. Fouling and antifouling: some basic aspects. Mar Ecol Prog Ser 58:175–189

    Article  Google Scholar 

  • Walt DR, Smulow JB, Turesky SS, Hill RG (1985) The effect of gravity on initial microbial adhesion. J Colloid Interface Sci 107:334–336

    Article  CAS  Google Scholar 

  • Walters MC III, Roe F, Bugnicourt A, Franklin MJ, Stewart PS (2003) Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother 47:317–323

    Article  PubMed  CAS  Google Scholar 

  • Whittaker CJ, Klier CM, Kolenbrander PE (1996) Mechanisms of adhesion by oral bacteria. Annu Rev Microbiol 50:513–552

    Article  PubMed  CAS  Google Scholar 

  • Wilson M (2001) Bacterial biofilms and human disease. Sci Prog 84:235–254

    Article  PubMed  CAS  Google Scholar 

  • Wimpenny JWT, Colasanti R (1997) A unifying hypothesis for the structure of microbial biofilms based on cellular automaton models. FEMS Microbiol Ecol 22:1–6

    Article  CAS  Google Scholar 

  • Xie H, Cook GS, Costerton JW, Bruce G, Rose TM, Lamont RJ (2000) Intergeneric communication in dental plaque biofilms. J Bacteriol 182:7067–7069

    Article  PubMed  CAS  Google Scholar 

  • Yarwood JM, Schlievert PM (2003) Quorum sensing in Staphylococcus infections. J Clin Investig 112:1620–1625

    PubMed  CAS  Google Scholar 

  • Yasuda H, Ajiki Y, Koga T, Kawada H, Yokota T (1993) Interaction between biofilms formed by Pseudomonas aeruginosa and clarithromycin. Antimicrob Agents Chemother 37:1749–1755

    PubMed  CAS  Google Scholar 

  • Zobell CE (1943) The effect of solid surfaces upon bacterial activity. J Bacteriol 46(1):39–56

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven L. Percival .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Percival, S.L., Malic, S., Cruz, H., Williams, D.W. (2011). Introduction to Biofilms. In: Percival, S., Knottenbelt, D., Cochrane, C. (eds) Biofilms and Veterinary Medicine. Springer Series on Biofilms, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21289-5_2

Download citation

Publish with us

Policies and ethics