Skip to main content

Multi-objective Cooperative Coevolutionary Evolutionary Algorithms for Continuous and Combinatorial Optimization

  • Chapter
Book cover Intelligent Decision Systems in Large-Scale Distributed Environments

Part of the book series: Studies in Computational Intelligence ((SCI,volume 362))

Abstract

This chapter introduces three new multi-objective cooperative coevolutionary variants of three state-of-the-art multi-objective evolutionary algorithms, namely, Nondominated Sorting Genetic Algorithm II (NSGA-II), Strength Pareto Evolutionary Algorithm 2 (SPEA2) and Multi-objective Cellular Genetic Algorithm (MOCell). In such a coevolutionary architecture, the population is split into several subpopulations, each of them being in charge of optimizing a subset of the global solution by using the original multi-objective algorithm. Evaluation of complete solutions is achieved through cooperation, i.e., all subpopulations share a subset of their current partial solutions. Our purpose is to study the performance of the coevolutionary multi-objective approaches in two different contexts: continuous and combinatorial optimization. In the first case we deal with a set of well-known benchmark problems, while in the the second one we conduct a study about a real-world problem related to grid computing, the bi-objective robust scheduling problem of independent tasks. The goal in this problem is to minimize makespan (i.e., the time when the latest machine finishes its assigned tasks) and to maximize the robustness of the schedule (i.e., its tolerance to unexpected changes on the estimated time to complete the tasks). We have made a parallel, multithreaded implementation of the coevolutionary algorithms and we have analyzed the results obtained in terms of both the quality of the Pareto front approximations yielded by the techniques as well as the resulting speedups when running them on a multicore machine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alba, E., Dorronsoro, B.: Cellular Genetic Algorithms. In: Operations Research/Compuer Science Interfaces. Springer, Heidelberg (2008)

    Google Scholar 

  2. Ali, S., Maciejewski, A.A., Siegel, H.J., Kim, J.K.: Measuring the robustness of a resource allocation. IEEE Transactions on Parallel and Distributed Systems 51(7), 630–641 (2004)

    Article  Google Scholar 

  3. Ali, S., Siegel, H.J., Maheswaran, M., Hensgen, D.: Representing task and machine heterogeneities for heterogeneous. Journal of Science and Engineering, Special 50 th Anniversary Issue 3, 195–207 (2000)

    Google Scholar 

  4. Barbosa, H.J., Barreto, A.M.: An interactive genetic algorithm with co-evolution of weights for multiobjective problems. In: Spector, L., Goodman, E.D., Wu, A., Langdon, W., Voigt, H.M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), pp. 203–210. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  5. Blazewicz, J., Lenstra, J.K., Rinnooy Kan, A.H.G.: Scheduling subject to resource constraints: classification and complexity. Discrete Applied Mathematics 5, 11–24 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  6. Coello, C.A.C., Lamont, G.B., Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  7. Coello, C.A.C., Sierra, M.R.: A coevolutionary multi-objective evolutionary algorithm. In: Proc. of IEEE Congress on Evolutionary Computation, vol. (1), pp. 482–489 (2003)

    Google Scholar 

  8. Danoy, G., Bouvry, P., Martins, T.: hlcga: A hybrid competitive coevolutionary genetic algorithm. In: Proc. of International Conference on Hybrid Intelligent Systems, vol. 48 (2006), doi:http://doi.ieeecomputersociety.org/10.1109/HIS.2006.32

    Google Scholar 

  9. Danoy, G., Dorronsoro, B., Bouvry, P.: Overcoming partitioning in large ad hoc networks using genetic algorithms. In: GECCO, pp. 1347–1354 (2009)

    Google Scholar 

  10. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  11. Deb, K., Agrawal, R.: Simulated binary crossover for continuous search space. Complex Systems 9, 115–148 (1995)

    MATH  MathSciNet  Google Scholar 

  12. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  13. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Test Problems for Evolutionary Multiobjective Optimization. In: Evolutionary Multiobjective Optimization. Theoretical Advances and Applications, pp. 105–145. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Goh, C.K., Tan, K.C.: A coevolutionary paradigm for dynamic multiobjective optimization. In: Evolutionary Multi-objective Optimization in Uncertain Environments. Studies in Computational Intelligence (SCI), vol. 186, pp. 153–185 (2009)

    Google Scholar 

  15. Goh, C.K., Tan, K.C.: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization. IEEE Transactions on Evolutionary Computation 13(1), 103–127 (2009)

    Article  Google Scholar 

  16. Iorio, A.W., Li, X.: A cooperative coevolutionary multiobjective algorithm using non-dominated sorting. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 537–548. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Keerativuttitumrong, N., Chaiyaratana, N., Varavithya, V.: Multi-objective co-operative co-evolutionary genetic algorithm. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 288–297. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  18. Knowles, J., Thiele, L., Zitzler, E.: A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers. TIK Report 214, Computer Engineering and Networks Laboratory (TIK), ETH Zurich (2006)

    Google Scholar 

  19. Lohn, J.D., Kraus, W.F., Haith, G.L.: Comparing a coevolutionary genetic algorithm for multiobjective optimization. In: CEC 2002: Proc. of the 2002 Congress on Evolutionary Computation, pp. 1157–1162. IEEE Computer Society, Washington (2002)

    Chapter  Google Scholar 

  20. Maneeratana, K., Boonlong, K., Chaiyaratana, N.: Multi-objective optimisation by co-operative co-evolution. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 772–781. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  21. Maneeratana, K., Boonlong, K., Chaiyaratana, N.: Co-operative co-evolutionary genetic algorithms for multi-objective topology design. Computer-Aided Design & Applications 2, 487–496 (2005)

    Google Scholar 

  22. Mao, J., Hirasawa, K., Hu, J., Murata, J.: Genetic symbiosis algorithm for multiobjective optimization problem. In: Proc. of the 2001 Genetic and Evolutionary Computation Conference, San Francisco, California, pp. 267–274 (2001)

    Google Scholar 

  23. Nebro, A.J., Durillo, J.J., Luna, F., Dorronsoro, B., Alba, E.: MOCell: A cellular genetic algorithm for multiobjective optimization. International Journal of Intelligent Systems 24, 726–746 (2009)

    Article  MATH  Google Scholar 

  24. Nebro, A.J., Luna, F., Alba, E., Dorronsoro, B., Durillo, J.J., Beham, A.: AbYSS: Adapting scatter search to multiobjective optimization. IEEE Transactions on Evolutionary Computation 12(4), 439–457 (2008)

    Article  Google Scholar 

  25. Paredis, J.: Coevolutionary life-time learning. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 72–80. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  26. Parmee, I.C., Watson, A.H.: Preliminary airframe design using co-evolutionary multiobjective genetic algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference, vol. 2, pp. 1657–1665. Morgan Kaufmann, Orlando (1999)

    Google Scholar 

  27. Potter, M., De Jong, K.: A cooperative coevolutionary approach to function optimization. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994)

    Google Scholar 

  28. Tan, K.C., Yang, Y.J., Goh, C.K.: A distributed cooperative coevolutionary algorithm for multiobjective optimization. IEEE Transactions on Evolutionary Computation 10(5), 527–549 (2006)

    Article  Google Scholar 

  29. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bulletin 1(6), 80–83 (1945)

    Article  Google Scholar 

  30. Xhafa, F., Alba, E., Díaz, B.D.: Efficient batch job scheduling in grids using cellular memetic algorithms. In: IPDPS, pp. 1–8. IEEE, Los Alamitos (2007)

    Google Scholar 

  31. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8(2), 173–195 (2000)

    Article  Google Scholar 

  32. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm. Tech. Rep. 103, Computer Engineering and Networks Laboratory (TIK), ETH Zurich (2001)

    Google Scholar 

  33. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dorronsoro, B., Danoy, G., Bouvry, P., Nebro, A.J. (2011). Multi-objective Cooperative Coevolutionary Evolutionary Algorithms for Continuous and Combinatorial Optimization. In: Bouvry, P., González-Vélez, H., Kołodziej, J. (eds) Intelligent Decision Systems in Large-Scale Distributed Environments. Studies in Computational Intelligence, vol 362. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21271-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21271-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21270-3

  • Online ISBN: 978-3-642-21271-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics