Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6681))

  • 679 Accesses

Abstract

The process where simple entities form more complex structures acting autonomously is called self-assembly; it lies at the centre of many physical, chemical and biological phenomena. Massively parallel formation of nanostructures or DNA computation are just two examples of possible applications of self-assembly once it is technologically harnessed. Various mathematical models have been proposed for self-assembly, including the well-known Winfree’s Tile Assembly Model based on Wang tiles on a two-dimensional plane. In the present paper we propose a model based on directed figures with partial catenation. Directed figures are defined as labelled polyominoes with designated start and end points, and catenation is defined for non-overlapping figures. This is one of possible extensions generalizing words and variable-length codes to planar structures, and a flexible model, allowing for a natural expression of self-assembling entities as well as e.g. image representation or “pictorial barcoding.” We prove several undecidability results related to filling the plane with a given set of figures and formation of infinite and semi-infinite zippers, demonstrating a unifying approach that could be useful for the study of self-assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, L.: Molecular computation of solutions to combinatorial problems. Science 266(5187), 1021–1024 (1994)

    Article  Google Scholar 

  2. Adleman, L., Kari, J., Kari, L., Reishus, D., Sosik, P.: The undecidability of the infinite ribbon problem: Implications for computing by self-assembly. SIAM Journal on Computing 38(6), 2356–2381 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berger, R.: The undecidability of the domino problem. Memoirs of the American Mathematical Society 66, 1–72 (1966)

    MathSciNet  MATH  Google Scholar 

  4. Chen, H.L., Goel, A.: Error free self-assembly using error prone tiles. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 62–75. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Costagliola, G., Ferrucci, F., Gravino, C.: Adding symbolic information to picture models: definitions and properties. Theoretical Computer Science 337, 51–104 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kolarz, M.: The code problem for directed figures. Theoretical Informatics and Applications RAIRO 44(4), 489–506 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kolarz, M., Moczurad, W.: Directed figure codes are decidable. Discrete Mathematics and Theoretical Computer Science 11(2), 1–14 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Moczurad, W.: Directed figure codes with weak equality. In: Fyfe, C., Tino, P., Charles, D., Garcia-Osorio, C., Yin, H. (eds.) IDEAL 2010. LNCS, vol. 6283, pp. 242–250. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Winfree, E.: Algorithmic Self-Assembly of DNA. Ph.D. thesis, California Institute of Technology (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moczurad, W. (2011). Plane-Filling Properties of Directed Figures. In: Atallah, M., Li, XY., Zhu, B. (eds) Frontiers in Algorithmics and Algorithmic Aspects in Information and Management. Lecture Notes in Computer Science, vol 6681. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21204-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21204-8_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21203-1

  • Online ISBN: 978-3-642-21204-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics