Skip to main content

Relevant Disorder Estimates: The Smoothing Phenomenon

  • Chapter
  • First Online:
  • 1138 Accesses

Part of the book series: Lecture Notes in Mathematics ((LNMECOLE,volume 2025))

Abstract

We show that, for α > 1 ∕ 2 and as soon as β > 0, disorder is relevant, in the sense that the critical behavior of the disordered system differs from the one of the pure, i.e. homogeneous, system. We do this by establishing a smoothing inequality for the free energy. We then review the literature on the effect of the disorder on phase transitions. In doing so we will present a number of physical predictions on disordered Ising models that are challenges for mathematicians.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

eferences

  1. A. Aharony, A.B. Harris, Absence of self-averaging and universal fluctuations in random systems near critical points. Phys. Rev. Lett. 77, 3700–3703 (1996)

    Article  Google Scholar 

  2. M. Aizenman, J. Wehr, Rounding effects of quenched randomness on first-order phase transitions. Commun. Math. Phys. 130, 489–528 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  3. K.S. Alexander, Ivy on the ceiling: first-order polymer depinning transitions with quenched disorder. Markov Process. Relat. Fields 13, 663–680 (2007)

    MATH  Google Scholar 

  4. R.J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic, London, 1982)

    MATH  Google Scholar 

  5. Q. Berger, H. Lacoin, The effect of disorder on the free-energy for the random walk pinning model: smoothing of the phase transition and low temperature asymptotics. J. Statist. Phys. 42, 322–341 (2011)

    Article  MathSciNet  Google Scholar 

  6. M. Birkner, R. Sun, Annealed vs quenched critical points for a random walk pinning model. Ann. Inst. H. Poincaré (B) Probab. Stat. 46, 414–441 (2010)

    Google Scholar 

  7. T. Bodineau, G. Giacomin, On the localization transition of random copolymers near selective interfaces. J. Stat. Phys. 117, 801–818 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. T. Bodineau, G. Giacomin, H. Lacoin, F.L. Toninelli, Copolymers at selective interfaces: new bounds on the phase diagram. J. Stat. Phys. 132, 603–626 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Bovier, C. Külske, There are no nice interfaces in (2 + 1)-dimensional SOS models in random media. J. Stat. Phys. 83, 751–759 (1996)

    Article  MATH  Google Scholar 

  10. J. Bricmont, A. Kupiainen, Phase transition in the 3d random field Ising model. Commun. Math. Phys. 116, 539–572 (1988)

    Article  MathSciNet  Google Scholar 

  11. F. Caravenna, J.-D. Deuschel, Scaling limits of (1+1)-dimensional pinning models with Laplacian interaction. Ann. Probab. 37, 903–945 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. F. Caravenna, G. Giacomin, M. Gubinelli, A numerical approach to copolymers at selective interfaces. J. Stat. Phys. 122, 799–832 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. J.T. Chayes, L. Chayes, D.S. Fisher, T. Spencer, Finite-size scaling and correlation lengths for disordered systems. Phys. Rev. Lett. 57, 2999–3002 (1986)

    Article  MathSciNet  Google Scholar 

  14. J.T. Chayes, L. Chayes, D.S. Fisher, T. Spencer, Correlation length bounds for disordered Ising ferromagnets. Commun. Math. Phys. 120, 501–523 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Cranston, O. Hryniv, S. Molchanov, Homo- and hetero-polymers in the mean-field approximation. Markov Process. Relat. Fields 15, 205–224 (2009)

    MATH  MathSciNet  Google Scholar 

  16. B. Derrida, E. Gardner, Renormalization group study of a disordered model. J. Phys. A Math. Gen. 17, 3223–3236 (1984)

    Article  MathSciNet  Google Scholar 

  17. Vik. S. Dotsenko, Vl. S. Dotsenko, Critical behavior of the 2D Ising model with impurity bonds. J. Phys. C Solid State Phys. 15, 495–507 (1982)

    Google Scholar 

  18. Vik. S. Dotsenko, Vl. S. Dotsenko, Critical behaviour of the phase transition in the 2D Ising Model with impurities. Adv. Phys. 32, 129–172 (1983)

    Google Scholar 

  19. Vik. S. Dotsenko, A.B. Harris, D. Sherrington, R.B. Stinchcombe, Replica-symmetry breaking in the critical behaviour of the random ferromagnet. J. Phys. A 28, 3093–3107 (1995)

    Google Scholar 

  20. Vik. S. Dotsenko, On the nature of the phase transition in the three-dimensional random field Ising model. J. Stat. Mech., P09005 (2007)

    Google Scholar 

  21. R. Fernández, J. Frölich, A.D. Sokal, Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory. Texts and Monographs in Physics (Springer, New York, 1992)

    Google Scholar 

  22. D.S. Fisher, Random transverse field Ising spin chains. Phys. Rev. Lett. 69, 534–537 (1992)

    Article  Google Scholar 

  23. G. Giacomin, F.L. Toninelli, Smoothing effect of quenched disorder on polymer depinning transitions. Commun. Math. Phys. 266, 1–16 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. G. Giacomin, F.L. Toninelli, Smoothing of depinning transitions for directed polymers with quenched disorder. Phys. Rev. Lett 96, 070602 (2006)

    Google Scholar 

  25. R.L. Greenblatt, M. Aizenman, J.L. Lebowitz, On spin systems with quenched randomness: classical and quantum. Physica A 389, 2902–2906 (2010)

    Article  MathSciNet  Google Scholar 

  26. A.B. Harris, Effect of random defects on the critical behaviour of Ising models. J. Phys. C 7, 1671–1692 (1974)

    Article  Google Scholar 

  27. B. McCoy, T.T. Wu, The two-dimensional Ising model (Harvard University Press, Cambridge, MA, 1973)

    MATH  Google Scholar 

  28. O. Motrunich, S.-C. Mau, D.A. Huse, D.S. Fisher, Infinite-randomness quantum Ising critical fixed points. Phys. Rev. B 61, 1160–1172 (2000)

    Article  Google Scholar 

  29. T. Vojta, R. Sknepnek, Critical points and quenched disorder: from Harris criterion to rare regions and smearing. Phys. Stat. Sol. B 241, 2118–2127 (2004)

    Article  Google Scholar 

  30. A. Weinrib, B.I. Halperin, Critical phenomena in systems with long-rage-correlated quenched disorder. Phys. Rev. B 27, 413–427 (1983)

    Article  Google Scholar 

  31. S. Wiseman, E. Domany, Finite-size scaling and lack of self-averaging in critical disordered systems. Phys. Rev. Lett. 81, 22–25 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giambattista Giacomin .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Giacomin, G. (2011). Relevant Disorder Estimates: The Smoothing Phenomenon. In: Disorder and Critical Phenomena Through Basic Probability Models. Lecture Notes in Mathematics(), vol 2025. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21156-0_5

Download citation

Publish with us

Policies and ethics