Skip to main content

Polylactic Acid Based Blends, Composites and Nanocomposites

  • Chapter
  • First Online:
Advances in Natural Polymers

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 18))

Abstract

Biopolymers are expected to be an alternative for conventional plastics due to the limited resources and soaring petroleum price which will restrict the use of petroleum based plastics in the near future. PLA has attracted the attention of polymer scientist recently as a potential biopolymer to substitute the conventional petroleum based plastics. The chapter aims to highlight on the recent developments in preparation and characterization of PLA blends (biodegradable and non-biodegradable blends), PLA composites (natural fiber and mineral fillers) and PLA nanocomposites (PLA/montmorillonite, PLA/carbon nanotubes and PLA/cellulose nanowhiskers).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jacobsen, S., Dege´e, P., Fritz, H.G., Dubois, P., Jerome, R.: Polylactide (PLA)-a new way of production. Polym. Eng. Sci. 39(7), 1311–1319 (1999)

    Article  CAS  Google Scholar 

  2. Jacobsen, S., Fritz, H.G.: Plasticizing polylactide-the effect of different plasticizers on the mechanical properties. Polym. Eng. Sci. 39(7), 1303–1310 (1999)

    Article  CAS  Google Scholar 

  3. Lim, J.W., Hassan, A., Rahmat, A.R., Wahit, M.U.: Morphology, thermal and mechanical behavior of polypropylene nanocomposites toughened with poly (ethylene-co-octene). Polym. Int. 55, 204–215 (2006)

    Article  CAS  Google Scholar 

  4. Hasegawa, N., Okamoto, H., Kawasumi, M., Usuki, A.: Preparation and mechanical properties of polystyrene–clay hybrids. J. Appl. Polym. Sci. 74, 3359–3364 (1999)

    Article  CAS  Google Scholar 

  5. Gupta, K., Rana, S.K., Deopura, B.: Mechanical properties and morphology of high-density polyethylene/linear low-density polyethylene blend. J. Appl. Polym. Sci. 46, 99–108 (1992)

    Article  CAS  Google Scholar 

  6. Wahit, M.U.: Rubber toughened polyamide 6/polypropylene nanocomposites: Mechanical, thermal and morphological properties. Ph.D. thesis. Universiti Teknologi Malaysia, Skudai (2006)

    Google Scholar 

  7. Baiardo, M., Frisoni, G., Scandola, M., Rimelen, M., Lips, D., Ruffieux, K., Wintermantel, E.: Thermal and mechanical properties of plasticized poly(L-lactic acid). J. Appl. Polym. Sci. 90, 1731–1738 (2003)

    Article  CAS  Google Scholar 

  8. Kulinski, Z., Piorkowska, E.: Crystallization, structure and properties of plasticized poly(L-lactide). Polymer 46, 10290–10300 (2005)

    Article  CAS  Google Scholar 

  9. Takayama, T., Todo, M.: Improvement of impact fracture properties of PLA/PCL polymer blend due to LTI addition. J. Mater. Sci. 41, 4989–4992 (2006)

    Article  CAS  Google Scholar 

  10. Takayama, T., Todo, M., Tsuji, H.: Effect of annealing on the mechanical properties of PLA/PCL and PLA/PCL/LTI polymer blends. J. Mech. Behav. Biomed. Mater. 4, 255–260 (2011)

    Article  Google Scholar 

  11. Semba, T., Kitagawa, K., Ishiaku, U.S., Hamada, H.: The Effect of crosslinking on the mechanical properties of polylactic acid/polycaprolactone blends. J. Appl. Polym. Sci. 101(3), 1816–1825 (2006)

    Article  CAS  Google Scholar 

  12. Chen, B.K., Shen, C.H., Chen, S.C., Chen, A.F.: Ductile PLA modified with methacryloyloxyalkyl isocyanate improves mechanical properties. Polymer 51, 4667–4672 (2010)

    Article  CAS  Google Scholar 

  13. Jiang, L., Wolcott, M.P., Zhang, J.: Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends. Biomacromolecules 7, 199–207 (2006)

    Article  Google Scholar 

  14. Li, Y., Shimizu, H.: Toughening of polylactide by melt blending with a biodegradable poly(ether)urethane elastomer. Macromol. Biosci. 7, 921–928 (2007)

    Article  CAS  Google Scholar 

  15. Liu, T.Y., Lin, W.C., Yang, M.C., Chen, S.Y.: Miscibility, thermal characterization and crystallization of poly(l-lactide) and poly(tetramethylene adipate-co-terephthalate) blend membranes. Polymer 46(26), 12586–12594 (2005)

    Article  CAS  Google Scholar 

  16. Anderson, K.S., Lim, S.H., Hillmyer, M.A.: Toughening of polylactide by melt blending with linear low-density polyethylene. J. Appl. Polym. Sci. 89, 3757–3768 (2003)

    Article  CAS  Google Scholar 

  17. Ishada, S., Nagasaki, R., Chino, K., Dong, T., Inoue, Y.: Toughening of poly(L-lactide) by melt blending with rubbers. J. Appl. Polym. Sci. 113, 558–566 (2009)

    Article  Google Scholar 

  18. Balakrishnan, H., Hassan, A., Wahit, M.U.: Mechanical, thermal and morphological properties of polylactic acid/linear low density polyethylene blends. J. Elastomers Plast. 42(3), 223–229 (2010)

    Article  CAS  Google Scholar 

  19. Natureworks LLC Website.: Technology Focus Report: Toughened PLA. http://www.natureworkspla.com. (2007). Accessed June 2011

  20. Dupont Website.: Product Data Sheet. Dupont Biomax Strong 100. http://www2.dupont.com/DuPont_Home/en_US/index.html (2007). Accessed June 2011

  21. Lanzillotta, C., Pipino, A., Lips, D.: New functional biopolymer natural fiber composites from agriculture resources. In: Proceeding of annual technical conference of the society of plastics engineers, vol. 60, pp. 2185 (2002)

    Google Scholar 

  22. Tokoro, R., Vu, D.M., Okubo, K., Tanaka, T., Fujii, T., Fujiura, T.: Mechanical properties of polylactic acid/bamboo fibers. J. Mater. Sci. 43, 775–787 (2008)

    Article  CAS  Google Scholar 

  23. Graupner, N., Herrmann, A.S., Mussig, J.: Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites: An overview about mechanical characteristics and application areas. Compos. A 40, 810–821 (2009)

    Google Scholar 

  24. Wu, C.S.: Renewable resource-based composites of recycled natural fibers and maleated polylactide bioplastic: Characterization and biodegradability. Polym. Degrad. Stab. 94, 1076–1084 (2009)

    Article  CAS  Google Scholar 

  25. Qin, L., Qiu, J., Liu, M., Ding, S., Shao, L., Lu, S., Zhang, G.: Mechanical and thermal properties of poly(lactic acid) composites with rice straw fiber modified by poly(butyl acrylate). Chem. Eng. J. 166(2), 772–778 (2011)

    Article  CAS  Google Scholar 

  26. Sawpan, M.A., Pickering, K.L., Fernyhough, A.: Improvement of mechanical performance of industrial hemp fibre reinforced polylactide biocomposites. Compos. A 42, 310–319 (2011)

    Google Scholar 

  27. Yussuf, A.A., Massoumi, I., Hassan, A.: Comparison of polylactic acid/kenaf and polylactic acid/rise husk composites: The influence of the natural fibers on the mechanical, thermal and biodegradability properties. J. Polym. Environ. 18(3), 422–429 (2010)

    Article  CAS  Google Scholar 

  28. Wu, C.S.: Improving polylactide/starch biocomposites by grafting polylactide with acrylic acid–characterization and biodegradability assessment. Macromol. Biosci. 5, 352–361 (2005)

    Article  CAS  Google Scholar 

  29. Shi, Q., Chen, C., Gao, L., Jiao, L., Xu, H., Guo, W.: Physical and degradation properties of binary or ternary blends composed of poly (lactic acid), thermoplastic starch and GMA grafted POE. Polym. Degrad. Stab. 96, 175–182 (2011)

    Article  CAS  Google Scholar 

  30. Rothon, R.N.: Particulate-Filled Polymer Composites. Longman Scientific & Technical, U.K. (1995)

    Google Scholar 

  31. Velasco, J.I., Desaja, J.A., Martinez, A.B.: Crystallization behavior of polypropylene filled with surface-modified talc. J. Appl. Polym. Sci. 61, 125–132 (1996)

    Article  CAS  Google Scholar 

  32. Audrey, W., Rahul, B., Amar, K.M.: Novel talc-filled biodegradable bacterial polyester composites. Ind. Eng. Chem. Res. 45, 7497–7503 (2006)

    Article  Google Scholar 

  33. Fowlks, A.C., Narayan, R.: The effect of maleated polylactic acid (PLA) as an interfacial modifier in PLA-talc composites. J. Appl. Polym. Sci. 118, 2810–2820 (2010)

    Article  CAS  Google Scholar 

  34. Huda, M.S., Drzal, L.T., Mohanty, A.K., Misra, M.: The effect of silane treated- and untreated- talc on the mechanical and physic-mechanical properties of poly(lactic acid)/newspaper fibers/talc hybrid composites. Compos. B 38, 367–379 (2007)

    Article  Google Scholar 

  35. Kim, H.S., Park, B.H., Choi, J.H., Yoon, J.S.: Mechanical properties and thermal stability of poly(L-lactide)/calcium carbonate composites. J. Appl. Polym. Sci. 109, 3087–3092 (2008)

    Article  CAS  Google Scholar 

  36. Wang, N., Zhang, X., Ma, X., Fang, J.: Influence of carbon black on the properties of plasticized poly(lactic acid) composites. Polym. Degrad. Stab. 93, 1044–1052 (2008)

    Article  CAS  Google Scholar 

  37. Giannelis, E.P.: Polymer-layered silicate nanocomposites: Synthesis, properties and applications. Appl. Organomet. Chem. 12(10–11), 675–680 (1998)

    Article  CAS  Google Scholar 

  38. Alexandre, M., Dubois, P.: Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng., R 28(1–2), 1–63 (2000)

    Article  Google Scholar 

  39. Ogata, N., Jimenez, G., Kawai, H., Ogihara, T.: Structure and thermal/mechanical properties of poly(L-lactide)-clay blend. J. Polym. Sci., Part B: Polym. Phys. 35, 389–396 (1997)

    Article  CAS  Google Scholar 

  40. Bandyopadhyay, S., Chen, R., Giannelis, E.P.: Biodegradable organic-inorganic hybrids based on poly(L-lactide). Polym. Mater. Sci. Eng. 81, 159–160 (1997)

    Google Scholar 

  41. Pluta, M., Galeski, A., Alexandre, M., Paul, M.A., Dubois, P.: Polylactide/montmorillonite nanocomposites and microcomposites prepared by melt blending: Structure and some physical properties. J. Appl. Polym. Sci. 86, 1497–1506 (2002)

    Article  CAS  Google Scholar 

  42. Ray, S.S., Maiti, P., Okamoto, M., Yamada, K., Ueda, K.: New polylactide/layered silicate nanocomposites. 1. Preparation, characterization, and properties. Macromolecules 35, 3104–3110 (2002)

    Article  CAS  Google Scholar 

  43. Maiti, P., Yamada, K., Okamoto, M., Ueda, K., Okamoto, K.: New polylactice/layered silicate nanocomposites: Role of organocalys. Chem. Mater. 14(11), 4654–4661 (2002)

    Article  CAS  Google Scholar 

  44. Nam, J.Y., Ray, S.S., Okamoto, M.: Crystallization behavior and Morphology of biodegradable polylactide/layered silicate nanocomposite. Macromolecules 36, 7126–7131 (2003)

    Article  CAS  Google Scholar 

  45. Lee, H.J., Park, T.G., Park, H.S., Lee, D.S., Lee, Y.K., Yoon, S.C., Nam, J.: Thermal and mechanical characteristics of poly (L-lactic acid) nanocomposite scaffold. Biomaterials 24, 2773–2778 (2003)

    Article  CAS  Google Scholar 

  46. Krikorian, V., Pochan, D.J.: Poly(L-lactic acid)/layered silicate nanocomposite: Fabrication, characterization, and properties. Chem. Mater. 15, 4317–4324 (2003)

    Article  CAS  Google Scholar 

  47. Di, Y., Iannace, S., Maio, E.D., Nicolais, L.: Poly(lactic acid)/organoclay nanocomposites: Thermal, rheological properties and foam processing. J. Polym. Sci., Part B: Polym. Phys. 43, 689–698 (2005)

    Article  CAS  Google Scholar 

  48. Petersson, L., Oksman, K.: Biopolymer based nanocomposites: Comparing layered silicates and microcrystalline cellulose as nanoreinforcement. Compos. Sci. Technol. 66, 2187–2196 (2006)

    Article  CAS  Google Scholar 

  49. Pluta, M.: Melt compounding of polylactide/organoclay: Structure and properties of nanocomposites. J. Polym. Sci., Part B: Polym. Phys. 44, 3392–3405 (2006)

    Article  CAS  Google Scholar 

  50. Wu, T.M., Wu, C.Y.: Biodegradable poly(lactic acid)/chitosan-modified montmorillonite nanocomposites: Preparation and characterization. Polym. Degrad. Stab. 91, 2198–2204 (2006)

    Article  CAS  Google Scholar 

  51. Pluta, M., Jeszka, J.K., Boiteux, G.: Polylactide/montmorillonite nanocomposites: Structure, dielectric, viscoelastic and thermal properties. Eur. Polymer J. 43, 2819–2835 (2007)

    Article  CAS  Google Scholar 

  52. Jiang, L., Zhang, J., Wolcott, M.P.: Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: Reinforcing effects and toughening mechanisms. Polymer 48, 7632–7644 (2007)

    Article  CAS  Google Scholar 

  53. Chow, W.S., Lok, S.K.: Flexural, morphological and thermal properties of polylactic acid/organo-montmorillonite nanocomposites. Polym. Polym. Compos. 16(4), 263–270 (2008)

    Google Scholar 

  54. Paul, M.A., Alexandre, M., Dege´e, P., Henrist, C., Rulmont, A., Dubois, P.: New nanocomposite materials based on plasticized poly(L-lactide) and organo-modified montmorillonites: Thermal and morphological study. Polymer 44, 443–450 (2003)

    Article  CAS  Google Scholar 

  55. Pluta, M.: Morphology and properties of polylactide modified by thermal treatment, filling with layered silicates and plasticization. Polymer 45, 8239–8251 (2004)

    Article  CAS  Google Scholar 

  56. Thellen, C., Orroth, C., Froio, D., Ziegler, D., Lucciarini, J., Farrell, R., D’Souza, N.A., Ann, J.: Influence of montmorillonite layered silicate on plasticized poly(L-lactide) blown films. Polymer 46, 11716–11727 (2005)

    Article  CAS  Google Scholar 

  57. Pluta, M., Paul, M.A., Alexandre, M., Dubois, P.: Plasticized polylactide/clay nanocomposites. I. the role of filler content and its surface organo-modification on the physico-chemical properties. J. Polym. Sci., Part B: Polym. Phys. 44, 299–311 (2006)

    Article  CAS  Google Scholar 

  58. Pluta, M., Paul, M.A., Alexandre, M., Dubois, P.: Plasticized polylactide/clay nanocomposites. II. the effect of aging on structure and properties in relation to the filler content and the nature of its organo-modification. J. Polym. Sci., Part B: Polym. Phys. 44, 312–325 (2006)

    Article  CAS  Google Scholar 

  59. Balakrishnan, H., Hassan, A., Imran, M., Wahit, M.U.: Toughening of polylactic acid nanocomposites: A short review. Polym. Plast. Technol. Eng. 51(2), 175–192 (2012)

    Article  CAS  Google Scholar 

  60. Li, T., Turng, L.S., Gong, S., Erlacher, K.: Polylactide, nanoclay, and core–shell rubber composites. Polym. Eng. Sci. 46(10), 1419–1427 (2006)

    Article  CAS  Google Scholar 

  61. Balakrishnan, H., Hassan, A., Wahit, M.U., Yussuf, A.A., Abdul Razak, S.B.: Novel toughened polylactic acid nanocomposites: Mechanical, thermal and morphological properties. Mater. Des. 31, 3289–3298 (2010)

    Article  CAS  Google Scholar 

  62. Balakrishnan, H., Masomi, I., Yussuf, A.A., Imran, M., Hassan, A., Wahit, M.U.: Ethylene copolymer toughened polylactic acid nanocomposites. Polym. Plast. Technol. Eng. 51(1), 19–27 (2012)

    Article  CAS  Google Scholar 

  63. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  CAS  Google Scholar 

  64. Coleman, J.N., Khan, U., Blau, W.J., Gunko, Y.K.: Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44, 1624–1652 (2006)

    Article  CAS  Google Scholar 

  65. Moniruzzaman, M., Winey, K.I.: Polymer nanocomposites containing carbon nanotubes. Macromolecules 39, 5194–5205 (2006)

    Article  CAS  Google Scholar 

  66. Ajayan, P.M., Stephan, O., Colliex, C., Trauth, D.: Aligned carbon nanotube arrays formed by cutting a polymer resin—nanotube composite. Science 265, 1212–1214 (1994)

    Article  CAS  Google Scholar 

  67. Song, W., Zheng, Z., Tang, W., Wang, X.: A facile approach to covalently functionalized carbon nanotubes with biocompatible polymer. Polymer 48, 3658–3663 (2007)

    Article  CAS  Google Scholar 

  68. Kobashi, K., Villmow, T., Andres, T., Pötschke, P.: Liquid sensing of melt-processed poly(lactic acid)/multi-walled carbon nanotube composite films. Sens. Actuators, B 134, 787–795 (2008)

    Article  Google Scholar 

  69. Kuan, C.F., Chen, C.H., Kuan, H.C., Lin, K.C., Chiang, C.L., Peng, H.C.: Multi-walled carbon nanotube reinforced poly(L-lactic acid) nanocomposites enhanced by water-crosslinking reaction. J. Phys. Chem. Solids 69, 1399–1402 (2008)

    Article  CAS  Google Scholar 

  70. Tsuji, H., Kawashima, Y., Takikawa, H., Tanaka, S.: Poly(L-lactide)/nano-structured carbon composites: Conductivity, thermal properties, crystallization, and biodegradation. Polymer 48, 4213–4225 (2007)

    Article  CAS  Google Scholar 

  71. Wu, C.S., Liao, H.T.: Study on the preparation and characterization of biodegradable polylactide/multi-walled carbon nanotubes nanocomposites. Polymer 48, 4449–4458 (2007)

    Article  CAS  Google Scholar 

  72. Wu, D., Wu, L., Zhang, M., Zhao, Y.: Viscoelasticity and thermal stability of polylactide composites with various functionalized carbon nanotubes. Polym. Degrad. Stab. 93, 1577–1584 (2008)

    Article  CAS  Google Scholar 

  73. Azizi Samir, M.A.S., Alloin, F., Dufresne, A.: Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6, 612–626 (2005)

    Article  Google Scholar 

  74. Grunert, M., Winter, W.T.: Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J. Polym. Environ. 10, 27–30 (2002)

    Article  CAS  Google Scholar 

  75. Gopalan, N.K., Dufresne, A., Gandini, A., Belgacem, M.N.: Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers. Biomacromolecules 4, 1835–1842 (2003)

    Article  Google Scholar 

  76. Kvien, I., Tanem, B.S., Oksman, K.: Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. Biomacromolecules 6, 3160–3165 (2005)

    Article  CAS  Google Scholar 

  77. Petersson, L., Kvien, I., Oksman, K.: Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Compos. Sci. Technol. 67, 2535–2544 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azman Hassan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hassan, A., Balakrishnan, H., Akbari, A. (2013). Polylactic Acid Based Blends, Composites and Nanocomposites. In: Thomas, S., Visakh, P., Mathew, A. (eds) Advances in Natural Polymers. Advanced Structured Materials, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20940-6_11

Download citation

Publish with us

Policies and ethics