Skip to main content

Combining ES Cells with Embryos

  • Protocol
  • First Online:
Advanced Protocols for Animal Transgenesis

Abstract

The marvel of embryonic stem (ES) cells is that after in vitro culturing and genetic modification, they still have the ability to contribute to the developing embryo, when combined with pre-implantation embryos, to produce chimeras and even completely ES cell-derived animals. In this chapter, we will describe three methods for combining ES cells with embryos: the injection of ES cells into blastocysts, the injection of ES cells into eight-cell stage embryos and aggregation of ES cells with morulae. To date, blastocyst injection is the most commonly used method, adopted by core facilities rather than individual laboratories, partially because of the high cost of equipment and long training period required, prohibitive to some labs. The Injection of eight-cell stage embryos can be performed using the same equipment, but because fewer cells are injected per embryo this method is faster and can be learned quickly by anyone trained in blastocyst injection. The procedure makes use of less expensive outbred embryo donor mice and produces completely ES cell-derived mice when good quality ES cells are used. Morula aggregation is performed under a simple dissecting stereomicroscope, thereby lowering the startup costs, and requires a shorter training period. Although the procedure utilizes less expensive outbred strains of mice as embryo donors, the savings are partially offset by the need for larger numbers of transferred embryos per female due to the lower implantation rate of the zona pellucida (ZP) free embryos. On the other hand, morula aggregations are much faster and easier to perform than microinjections and similar to eight-cell microinjections they often result in fully ES cell-derived animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CM:

Compacted Morulae

dpc:

Days post coitum

DIC:

Differential interference contrast optics

ES Cells:

Embryonic stem cells

HMC:

Hoffman modulation contrast optics

ICM:

Inner cell mass

PVP:

Polyvinylpyrrolidone

SW:

Swiss Webster

ZP:

Zona pellucida

References

  1. Nagy A, Rossant J (2001) Chimaeras and mosaics for dissecting complex mutant phenotypes. Int J Dev Biol 45(3):577–582

    PubMed  CAS  Google Scholar 

  2. Tam PP, Rossant J (2003) Mouse embryonic chimeras: tools for studying mammalian development. Development 130(25):6155–6163

    Article  PubMed  CAS  Google Scholar 

  3. Tarkowski AK (1961) Mouse chimaeras developed from fused eggs. Nature 190:857–860

    Article  PubMed  CAS  Google Scholar 

  4. Mintz B (1962) Experimental study of the developing mammalian egg: removal of the Zona Pellucida. Science (New York, NY) 138(3540):594–595

    Article  CAS  Google Scholar 

  5. Gardner RL (1968) Mouse chimeras obtained by the injection of cells into the blastocyst. Nature 220(5167):596–597

    Article  PubMed  CAS  Google Scholar 

  6. Moustafa LA, Brinster RL (1972) Induced chimaerism by transplanting embryonic cells into mouse blastocysts. J Exp Zool 181(2):193–201

    Article  PubMed  CAS  Google Scholar 

  7. Babinet C (1980) A simplified method for mouse blastocyst injection. Exp Cell Res 130(1):15–19

    Article  PubMed  CAS  Google Scholar 

  8. Lallemand Y, Brulet P (1990) An in situ assessment of the routes and extents of colonisation of the mouse embryo by embryonic stem cells and their descendants. Development 110(4):1241–1248

    PubMed  CAS  Google Scholar 

  9. Tajbakhsh S, Bober E, Babinet C, Pournin S, Arnold H, Buckingham M (1996) Gene targeting the myf-5 locus with nlacZ reveals expression of this myogenic factor in mature skeletal muscle fibres as well as early embryonic muscle. Dev Dyn 206(3):291–300

    Article  PubMed  CAS  Google Scholar 

  10. Stewart CL (1993) Production of chimeras between embryonic stem cells and embryos. Meth Enzymol 225:823–855

    Article  PubMed  CAS  Google Scholar 

  11. Tokunaga T, Tsunoda Y (1992) Efficacious production of viable germ-Line chimeras between embryonic stem (ES) cells and 8-cell stage embryos. Dev Growth Differ 34(5):561–566

    Article  Google Scholar 

  12. Yagi T, Tokunaga T, Furuta Y, Nada S, Yoshida M, Tsukada T, Saga Y, Takeda N, Ikawa Y, Aizawa S (1993) A novel ES cell line, TT2, with high germline-differentiating potency. Anal Biochem 214(1):70–76

    Article  PubMed  CAS  Google Scholar 

  13. Poueymirou WT, Auerbach W, Frendewey D, Hickey JF, Escaravage JM, Esau L, Dore AT, Stevens S, Adams NC, Dominguez MG, Gale NW, Yancopoulos GD, DeChiara TM, Valenzuela DM (2007) F0 generation mice fully derived from gene-targeted embryonic stem cells allowing immediate phenotypic analyses. Nat Biotechnol 25(1):91–99

    Article  PubMed  CAS  Google Scholar 

  14. Eggan K, Akutsu H, Loring J, Jackson-Grusby L, Klemm M, Rideout WM 3rd, Yanagimachi R, Jaenisch R (2001) Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc Natl Acad Sci USA 98(11):6209–6214

    Article  PubMed  CAS  Google Scholar 

  15. Huang J, Deng K, Wu H, Liu Z, Chen Z, Cao S, Zhou L, Ye X, Keefe DL, Liu L (2008) Efficient production of mice from embryonic stem cells injected into four- or eight-cell embryos by piezo micromanipulation. Stem Cells Dayton OH 26(7):1883–1890

    Article  CAS  Google Scholar 

  16. Stewart C (1980) Aggregation between teratocarcinoma cells and preimplantation mouse embryos. J Embryol Exp Morphol 58:289–302

    PubMed  CAS  Google Scholar 

  17. Stewart CL (1982) Formation of viable chimaeras by aggregation between teratocarcinomas and preimplantation mouse embryos. J Embryol Exp Morphol 67:167–179

    PubMed  CAS  Google Scholar 

  18. Nagy A, Gocza E, Diaz EM, Prideaux VR, Ivanyi E, Markkula M, Rossant J (1990) Embryonic stem cells alone are able to support fetal development in the mouse. Development 110(3):815–821

    PubMed  CAS  Google Scholar 

  19. Wood SA, Allen ND, Rossant J, Auerbach A, Nagy A (1993) Non-injection methods for the production of embryonic stem cell-embryo chimaeras. Nature 365(6441):87–89

    Article  PubMed  CAS  Google Scholar 

  20. Khillan JS, Bao Y (1997) Preparation of animals with a high degree of chimerism by one-step coculture of embryonic stem cells and preimplantation embryos. Biotechniques 22(3):544–549

    PubMed  CAS  Google Scholar 

  21. Saburi S, Azuma S, Sato E, Toyoda Y, Tachi C (1997) Developmental fate of single embryonic stem cells microinjected into 8-cell-stage mouse embryos. Differ Res Biol Divers 62(1):1–11

    Article  CAS  Google Scholar 

  22. Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 87:27–45

    PubMed  CAS  Google Scholar 

  23. Voss AK, Thomas T, Gruss P (1997) Germ line chimeras from female ES cells. Exp Cell Res 230(1):45–49

    Article  PubMed  CAS  Google Scholar 

  24. Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci USA 90(18):8424–8428

    Article  PubMed  CAS  Google Scholar 

  25. Stewart CL, Kaspar P, Brunet LJ, Bhatt H, Gadi I, Kontgen F, Abbondanzo SJ (1992) Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature 359(6390):76–79

    Article  PubMed  CAS  Google Scholar 

  26. Eggan K, Rode A, Jentsch I, Samuel C, Hennek T, Tintrup H, Zevnik B, Erwin J, Loring J, Jackson-Grusby L, Speicher MR, Kuehn R, Jaenisch R (2002) Male and female mice derived from the same embryonic stem cell clone by tetraploid embryo complementation. Nat Biotechnol 20(5):455–459

    Article  PubMed  CAS  Google Scholar 

  27. Longo L, Bygrave A, Grosveld FG, Pandolfi PP (1997) The chromosome make-up of mouse embryonic stem cells is predictive of somatic and germ cell chimaerism. Transgen Res 6(5):321–328

    Article  CAS  Google Scholar 

  28. Liu X, Wu H, Loring J, Hormuzdi S, Disteche CM, Bornstein P, Jaenisch R (1997) Trisomy eight in ES cells is a common potential problem in gene targeting and interferes with germ line transmission. Dev Dyn 209(1):85–91

    Article  PubMed  CAS  Google Scholar 

  29. Fedorov LM, Haegel-Kronenberger H, Hirchenhain J (1997) A comparison of the germline potential of differently aged ES cell lines and their transfected descendants. Transgen Res 6(3):223–231

    Article  CAS  Google Scholar 

  30. Schwartzberg PL, Goff SP, Robertson EJ (1989) Germ-line transmission of a c-abl mutation produced by targeted gene disruption in ES cells. Sci NY NY 246(4931):799–803

    Article  CAS  Google Scholar 

  31. Austin CP, Battey JF, Bradley A, Bucan M, Capecchi M, Collins FS, Dove WF, Duyk G, Dymecki S, Eppig JT, Grieder FB, Heintz N, Hicks G, Insel TR, Joyner A, Koller BH, Lloyd KC, Magnuson T, Moore MW, Nagy A, Pollock JD, Roses AD, Sands AT, Seed B, Skarnes WC, Snoddy J, Soriano P, Stewart DJ, Stewart F, Stillman B, Varmus H, Varticovski L, Verma IM, Vogt TF, von Melchner H, Witkowski J, Woychik RP, Wurst W, Yancopoulos GD, Young SG, Zambrowicz B (2004) The knockout mouse project. Nat Genet 36(9):921–924

    Article  PubMed  CAS  Google Scholar 

  32. Collins FS, Finnell RH, Rossant J, Wurst W (2007) A new partner for the international knockout mouse consortium. Cell 129(2):235

    Article  PubMed  CAS  Google Scholar 

  33. Hughes ED, Qu YY, Genik SJ, Lyons RH, Pacheco CD, Lieberman AP, Samuelson LC, Nasonkin IO, Camper SA, Van Keuren ML, Saunders TL (2007) Genetic variation in C57BL/6 ES cell lines and genetic instability in the Bruce4 C57BL/6 ES cell line. Mamm Genome 18(8):549–558

    Article  PubMed  CAS  Google Scholar 

  34. Auerbach W, Dunmore JH, Fairchild-Huntress V, Fang Q, Auerbach AB, Huszar D, Joyner AL (2000) Establishment and chimera analysis of 129/SvEv- and C57BL/6-derived mouse embryonic stem cell lines. Biotechniques 29(5):1024–1028, 1030, 1032

    PubMed  CAS  Google Scholar 

  35. Ware CB, Siverts LA, Nelson AM, Morton JF, Ladiges WC (2003) Utility of a C57BL/6 ES line versus 129 ES lines for targeted mutations in mice. Transgen Res 12(6):743–746

    Article  CAS  Google Scholar 

  36. Seong E, Saunders TL, Stewart CL, Burmeister M (2004) To knockout in 129 or in C57BL/6: that is the question. Trends Genet 20(2):59–62

    Article  PubMed  CAS  Google Scholar 

  37. Ward CM, Barrow KM, Stern PL (2004) Significant variations in differentiation properties between independent mouse ES cell lines cultured under defined conditions. Exp Cell Res 293(2):229–238

    Article  PubMed  CAS  Google Scholar 

  38. Hansen GM, Markesich DC, Burnett MB, Zhu Q, Dionne KM, Richter LJ, Finnell RH, Sands AT, Zambrowicz BP, Abuin A (2008) Large-scale gene trapping in C57BL/6N mouse embryonic stem cells. Genome Res 18(10):1670–1679

    Article  PubMed  CAS  Google Scholar 

  39. Brook FA, Gardner RL (1997) The origin and efficient derivation of embryonic stem cells in the mouse. Proc Natl Acad Sci USA 94(11):5709–5712

    Article  PubMed  CAS  Google Scholar 

  40. Cheng J, Dutra A, Takesono A, Garrett-Beal L, Schwartzberg PL (2004) Improved generation of C57BL/6J mouse embryonic stem cells in a defined serum-free media. Genesis 39(2):100–104

    Article  PubMed  Google Scholar 

  41. Schoonjans L, Kreemers V, Danloy S, Moreadith RW, Laroche Y, Collen D (2003) Improved generation of germline-competent embryonic stem cell lines from inbred mouse strains. Stem Cells Dayton OH 21((1):90–97

    Article  Google Scholar 

  42. Batlle-Morera L, Smith A, Nichols J (2008) Parameters influencing derivation of embryonic stem cells from murine embryos. Genesis 46(12):758–767

    Article  PubMed  Google Scholar 

  43. Ledermann B, Burki K (1991) Establishment of a germ-line competent C57BL/6 embryonic stem cell line. Exp Cell Res 197(2):254–258

    Article  PubMed  CAS  Google Scholar 

  44. Kontgen F, Suss G, Stewart C, Steinmetz M, Bluethmann H (1993) Targeted disruption of the MHC class II Aa gene in C57BL/6 mice. Int Immunol 5(8):957–964

    Article  PubMed  CAS  Google Scholar 

  45. Lemckert FA, Sedgwick JD, Korner H (1997) Gene targeting in C57BL/6 ES cells. Successful germ line transmission using recipient BALB/c blastocysts developmentally matured in vitro. Nucl Acids Res 25(4):917–918

    Article  PubMed  CAS  Google Scholar 

  46. Pacholczyk G, Suhag R, Mazurek M, Dederscheck SM, Koni PA (2008) Generation of C57BL/6 knockout mice using C3H x BALB/c blastocysts. Biotechniques 44(3):413–416

    Article  PubMed  CAS  Google Scholar 

  47. Schuster-Gossler K, Lee AW, Lerner CP, Parker HJ, Dyer VW, Scott VE, Gossler A, Conover JC (2001) Use of coisogenic host blastocysts for efficient establishment of germline chimeras with C57BL/6J ES cell lines. Biotechniques 31(5):1022–1024

    PubMed  CAS  Google Scholar 

  48. Pettitt SJ, Liang Q, Rairdan XY, Moran JL, Prosser HM, Beier DR, Lloyd KC, Bradley A, Skarnes WC (2009) Agouti C57BL/6N embryonic stem cells for mouse genetic resources. Nat Meth 6(7):493–495

    Article  CAS  Google Scholar 

  49. Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A (2008) The ground state of embryonic stem cell self-renewal. Nature 453(7194):519–523

    Article  PubMed  CAS  Google Scholar 

  50. Nichols J, Jones K, Phillips JM, Newland SA, Roode M, Mansfield W, Smith A, Cooke A (2009) Validated germline-competent embryonic stem cell lines from no obese diabetic mice. Nat Med 15(7):814–818

    Article  PubMed  CAS  Google Scholar 

  51. Silva J, Smith A (2008) Capturing pluripotency. Cell 132(4):532–536

    Article  PubMed  CAS  Google Scholar 

  52. Sato H, Amagai K, Shimizukawa R, Tamai Y (2009) Stable generation of serum- and feeder-free embryonic stem cell-derived mice with full germline-competency by using a GSK3 specific inhibitor. Genesis 47(6):414–422

    Article  PubMed  CAS  Google Scholar 

  53. Gertsenstein M, Nutter LM, Reid T, Pereira M, Stanford WL, Rossant J, Nagy A (2010) Efficient generation of germ line transmitting chimeras from C57BL/6N ES cells by aggregation with outbred host embryos. PLoS ONE 5(6):e11260

    Article  PubMed  Google Scholar 

  54. Kiyonari H, Kaneko M, Abe S, Aizawa S (2010) Three inhibitors of FGF receptor, ERK, and GSK3 establishes germline-competent embryonic stem cells of C57BL/6N mouse strain with high efficiency and stability. Genesis 48(5):317–327

    PubMed  CAS  Google Scholar 

  55. Hooper M, Hardy K, Handyside A, Hunter S, Monk M (1987) HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature 326(6110):292–295

    Article  PubMed  CAS  Google Scholar 

  56. Sibilia M, Wagner EF (1995) Strain-dependent epithelial defects in mice lacking the EGF receptor. Sci NY NY 269(5221):234–238

    Article  CAS  Google Scholar 

  57. Threadgill DW, Dlugosz AA, Hansen LA, Tennenbaum T, Lichti U, Yee D, LaMantia C, Mourton T, Herrup K, Harris RC et al (1995) Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Sci NY NY 269(5221):230–234

    Article  CAS  Google Scholar 

  58. Silva AJ, Simpson EM, Takahashi JS, Lipp H-P, Nakanishi S, Wehner JM, Giese KP, Tully T, Abel T, Chapman PF, Fox K, Grant S, Itohara S, Lathe R, Mayford M, McNamara JO, Morris RJ, Picciotto M, Roder J, Shin H-S, Slesinger PA, Storm DR, Stryker MP, Tonegawa S, Wang Y, Wolfer DP (1997) Mutant mice and neuroscience: recommendations concerning genetic background. Neuron 19(4):755–759

    Article  Google Scholar 

  59. Parker-Thornburg JV, Alana JL, Smith CN, Detry M, Rojas ML, Baskin KK (2005) Cryopreserved morulae can be used to efficiently generate germline-transmitting chimeras by blastocyst injection. Transgen Res 14(5):685–690

    Article  CAS  Google Scholar 

  60. Rossant J, Merentes-Diaz E, Gocza E, Ivanyi E, Nagy A (1991) Developmental potential of mouse embryonic stem cells. In: Bavister BD (ed) Serono symposium on preimplantation embryo development. Springer, NY, pp 157–165

    Google Scholar 

  61. Wang Z, Jaenisch R (2004) At most three ES cells contribute to the somatic lineages of chimeric mice and of mice produced by ES-tetraploid complementation. Dev Biol 275(1):192–201

    Article  PubMed  CAS  Google Scholar 

  62. De Repentigny Y, Kothary R (2010) Production of mouse chimeras by injection of embryonic stem cells into the perivitelline space of one-cell stage embryos. Transgen Res 19(6):1137–1144

    Article  CAS  Google Scholar 

  63. Nagy A (2003) Manipulating the mouse embryo: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  64. Kondoh G, Yamamoto Y, Yoshida K, Suzuki Y, Osuka S, Nakano Y, Morita T, Takeda J (1999) Easy assessment of ES cell clone potency for chimeric development and germ-line competency by an optimized aggregation method. J Biochem Biophys Meth 39(3):137–142

    Article  PubMed  CAS  Google Scholar 

  65. Rulicke T, Haenggli A, Rappold K, Moehrlen U, Stallmach T (2006) No transuterine migration of fertilised ova after unilateral embryo transfer in mice. Reprod Fertil Dev 18(8):885–891

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Williams, E., Auerbach, W., DeChiara, T.M., Gertsenstein, M. (2011). Combining ES Cells with Embryos. In: Pease, S., Saunders, T. (eds) Advanced Protocols for Animal Transgenesis. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20792-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20792-1_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20791-4

  • Online ISBN: 978-3-642-20792-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics