Skip to main content

The Importance of Mouse ES Cell Line Selection

  • Protocol
  • First Online:
Advanced Protocols for Animal Transgenesis

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 1713 Accesses

Abstract

The choice of a specific parental ES cell line used to create a genetically modified mouse has critical impact on the overall success of the project – affecting costs, complexity of effort, and time to efficient project completion. Despite the importance of making a thoughtful choice, many people default to employing a familiar cell line previously used in their laboratory or they are limited to the cell lines available from the service facility at their Institution. With careful consideration of a few key experimental parameters, the investigator can easily avoid unnecessary mistakes.

Historically, substrains of 129 strain mice have been used to create the majority of parental ES cell lines now in common use. Often these cell lines have been expanded many times and shared among colleagues, rather than being obtained directly from the laboratory in which they were originally established. Although this was a common practice in the early days of ES cell technology, avenues are now in place to assure optimal cell line history, health, genetic integrity, and performance. Methods for establishing new ES cell lines have greatly improved. Well-validated ES cell lines are now commercially available from a variety of genetic backgrounds beyond the 129-strain. In this chapter, we will discuss critical factors to consider, when choosing an ES cell line for a project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ES cells:

Embryonic stem cells

MEF:

Mouse embryonic fibroblasts

BRL cells:

Buffalo rat liver cells

LIF:

Leukemia inhibitory factor

FBS:

Fetal bovine serum

KOSR:

Knockout serum replacement

BMP4:

Bone morphogenetic protein 4

GSK3:

Glycogen synthase kinase 3

MEK:

MAP kinase

FGF:

Fibroblast growth factor

GLT:

Germline transmission

ATCC:

American Type Culture Collection

BAC:

Bacterial artificial chromosome

SW:

Swiss Webster

DMEM:

Dulbecco’s Modified Eagle Medium

IKMC:

International Knockout Mouse Consortium

KOMP:

NIH Knockout Mouse Project

EUCOMM:

European Union Conditional Mouse Mutagenesis Program

NorCOMM:

North American Conditional Mouse Mutagenesis

NEAA:

Non-essential amino acids

Pen-Strep:

Penicillin and streptomycin

PE:

Plating efficiency

TC:

Tissue culture

TE:

Targeting efficiency

EP:

Electroporation

References

  1. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  PubMed  CAS  Google Scholar 

  2. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638

    Article  PubMed  CAS  Google Scholar 

  3. Robertson EJ, Kaufman MH, Bradley A, Evans MJ (1983) Isolation, properties and karyotype analysis of pluripotential (EK) cell lines from normal and parthenogenetic embryos. In: Silver LM, Martin GR, Strickland S (eds) Teratocarcinoma stem cells. Cold Spring Harbour Conferences on Cell Proliferation 10. CSHL Press, NY

    Google Scholar 

  4. Bradley A, Evans M, Kaufman MH, Robertson E (1984) Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309:255–256

    Article  PubMed  CAS  Google Scholar 

  5. Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood island and myocardium. J Embryol Exp Morph 87:27–45

    PubMed  CAS  Google Scholar 

  6. Simpson EM, Linder CC, Sargent EE, Davisson MT, Mobraaten LE, Sharp JJ (1997) Genetic variation among 129 substrains and its importance for targeted mutagenesis in mice. Nature Genet 16:19–27

    Article  PubMed  CAS  Google Scholar 

  7. Festing MF, Simpson EM, Davisson MT, Mobraaten LE (1999) Revised nomenclature for strain 129 mice. Mamm Genome 10:836

    Article  PubMed  CAS  Google Scholar 

  8. Ledermann & Bürki (1991) Establishment of a germ-line competent C57BL/6 embryonic stem cell line. Exp Cell Res 197:254–258

    Article  PubMed  Google Scholar 

  9. Kontgen F, Suss G, Stewart C, Steinmetz M, Bluethmann H (1993) Targeted disruption of the MHC class II Aa gene in C57BL/6 mice. Int Immunol 8:957–964

    Article  Google Scholar 

  10. Lemckert FA, Sedgwick JD, Korner H (1997) Gene targeting in C57BL/6 ES cells Successful germ line transmission using recipient BALB/c blastocysts developmentally matured in vitro. Nucleic Acids Res 25:917–918

    Article  PubMed  CAS  Google Scholar 

  11. Noben-Trauth N, Köhler G, Bürki K, Ledermann B (1996) Efficient targeting of the IL-4 gene in a BALB/c embryonic stem cell line. Transgenic Res 5:487–491

    Article  PubMed  CAS  Google Scholar 

  12. Smith AG, Hooper ML (1987) Buffalo rat liver cells produce a diffusible activity, which inhibits the differentiation of murine embryonal carcinoma and embryonic stem cells. Dev Biol 121:1–9

    Article  PubMed  CAS  Google Scholar 

  13. Williams RL, Hilton DJ, Pease S, Willson TA, Stewart CL, Gearing DP, Wagner EF, Metcalf D, Nicola NA, Gough NM (1988) Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336:684–687

    Article  PubMed  CAS  Google Scholar 

  14. Smith AG, Heath JK, Donaldson DD, Wong GG, Moreau J, Stahl Mand Rogers D (1988) Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336:688–690

    Article  PubMed  CAS  Google Scholar 

  15. Auerbach W, Dunmore JD, Fairchild-Huntress V, Fang Q, Auerbach AB, Huszar D, Joyner AL (2000) Establishment and chimera analysis of 129/SvEv and C57BL/6- derived ES cell lines. Biotechniques 29:1024–1032

    PubMed  CAS  Google Scholar 

  16. Schoonjans L, Kreemers V, Danloy S, Moreadith RW, Laroche Y, Collen D (2003) Improved generation of germline-competent embryonic stem cell lines from inbred mouse strains. Stem Cells 21:90–97

    Article  PubMed  Google Scholar 

  17. Poueymirou WT, Auerbach W, Frendewey D, Hickey JF, Escaravage JM, Esau L, Doré AT, Stevens S, Adams NC, Dominguez MG, Gale NW, Yancopoulos GD, DeChiara TM, Valenzuela DM (2007) F0 generation mice fully derived from gene-targeted embryonic stem cells allowing immediate phenotypic analyses. Nat Biotechnol 25:91–99

    Article  PubMed  CAS  Google Scholar 

  18. Ying QL, Nichols J, Chambers I, Smith A (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115:281–292

    Article  PubMed  CAS  Google Scholar 

  19. Cheng J, Dutra A, Takesono A, Garrett-Beal L, Schwartzberg PL (2004) Improved generation of C57BL/6J mouse embryonic stem cells in a defined serum-free media. Genesis 39:100–104

    Article  PubMed  Google Scholar 

  20. Ogawa K, Nishinakamura R, Iwamatsu Y, Shimosato D, Niwa H (2006) Synergistic action of Wnt and LIF in maintaining pluripotency of mouse ES cells. Biochem Biophys Res Commun 343:159–166

    Article  PubMed  CAS  Google Scholar 

  21. Sato H, Amagai K, Shimizukawa R, Tamai Y (2009) Stable generation of serum- and feeder-free embryonic stem cell-derived mice with full germline-competency by using a GSK3 specific inhibitor. Genesis 47:414–22

    Article  PubMed  CAS  Google Scholar 

  22. Nagy A, Gertsenstein M, Vintersten K, Behringer R (2003) Manipulating the mouse embryo: a laboratory manual. CSHL Press, NY, Third Edition

    Google Scholar 

  23. Buehr M, Smith A (2003) Genesis of embryonic stem cells. Philos Trans R Soc Lond B Biol Sci 358:1397–402

    Article  PubMed  CAS  Google Scholar 

  24. Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A (2008) The ground state of embryonic stem cell self-renewal. Nature 453:519–23

    Article  PubMed  CAS  Google Scholar 

  25. Threadgill DW, Yee D, Matin A, Nadeau JH, Magnuson T (1997) Genealogy of the 129 inbred strains: 129/SvJ is a contaminated inbred strain. Mamm Genome 8:390–393

    Article  PubMed  CAS  Google Scholar 

  26. Handyside AH, O'Neill GT, Jones M, Hooper ML (1989) Use of BRL-conditioned medium in combination with feeder layers to isolate a diploid embryonal stem cell line. Roux’s Arch Dev Biol 198(48–55):14

    Google Scholar 

  27. Hooper ML, Hardy K, Handyside A, Hunter S, Monk M (1987) HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature 326:292–295

    Article  PubMed  CAS  Google Scholar 

  28. McMahon AP, Bradley A (1990) The Wnt-1 (int-1) protooncogeneis required for development of a large region of the mouse brain. Cell 62:1073–1085

    Article  PubMed  CAS  Google Scholar 

  29. Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926

    Article  PubMed  CAS  Google Scholar 

  30. Nagy A, Rossant J, Nagy R, Abramownewerly W, Roder JC (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci USA 90:8424–8428

    Article  PubMed  CAS  Google Scholar 

  31. Swiatek PJ, Gridley T (1993) Perinatal Lethality and defects in hindbrain development in mice homozygous for a targeted mutation of the zinc finger gene Krox20. Genes Dev 7:2071–2084

    Article  PubMed  CAS  Google Scholar 

  32. Shipley JM, Wesselschmidt RL, Kobayashi DK, Ley TJ, Shapiro SD (1996) Metalloelastase is required for macrophage-mediated proteolysis and matrix invasion in mice. Proc Natl Acad Sci USA 93:3942–3946

    Article  PubMed  CAS  Google Scholar 

  33. Chen WV, Soriano P (2003) Gene trap mutagenesis in embryonic stem cells. Meth Enzymol 365:367–86

    PubMed  CAS  Google Scholar 

  34. Wolfer DP, Crusio WE, Lipp HP (2002) Knockout mice: simple solutions to the problems of genetic background and flanking genes. Trends Neurosci 25:336–340

    Article  PubMed  CAS  Google Scholar 

  35. Eggan KH, Loring AJ, Jackson-Grusby L, Klemm M, Rideout WM, Yanagimachi R, Jaenisch R (2001) Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc Natl Acad Sci USA 98:6209–6214

    Article  PubMed  CAS  Google Scholar 

  36. Valenzuela DM, Murphy AJ, Frendewey D, Gale NW, Economides AN, Auerbach W, Poueymirou WT, Adams NC, Rojas J, Yasenchak J, Chernomorsky R, Boucher M, Elsasser AL, Esau L, Zheng J, Griffiths JA, Wang X, Su H, Xue Y, Dominguez MG, Noguera I, Torres R, Macdonald LE, Stewart AF, DeChiara TM, Yancopoulos GD (2003) High-throughput engineering of the mouse genome coupled with high-resolution expression analysis. Nat Biotechnol 21:652–659

    Article  PubMed  CAS  Google Scholar 

  37. George SH, Gertsenstein M, Vintersten K, Korets-Smith E, Murphy J, Stevens ME, Haigh JJ, Nagy A (2007) Developmental and adult phenotyping directly from mutant embryonic stem cells. Proc Natl Acad Sci USA 104:4455–4460

    Article  PubMed  CAS  Google Scholar 

  38. Hughes ED, Qu YY, Genik SJ, Lyons RH, Pacheco CD, Lieberman AP, Samuelson LC, Nasonkin IO, Camper SA, Van Keuren ML, Saunders TL (2007) Genetic variation in C57BL/6 ES cell lines and genetic instability in the Bruce4 C57BL/6 ES cell line. Mamm Genome 18:549–58

    Article  PubMed  CAS  Google Scholar 

  39. Seong E, Saunders TL, Stewart CL, Burmeister M (2004) To knockout in 129 or C57BL/6: that is the question. Trends Genet 20:59–62

    Article  PubMed  CAS  Google Scholar 

  40. Hansen GM, Markesich DC, Burnett MB, Zhu Q, Dionne KM, Richter LJ, Finnell RH, Sands AT, Zambrowicz BP, Abuin A (2008) Large-scale gene trapping in C57BL/6N mouse embryonic stem cells. Genome Res 18:1670–1679

    Article  PubMed  CAS  Google Scholar 

  41. Pettitt SJ, Liang Q, Rairdan XY, Moran JL, Prosser HM, Beier DR, Lloyd KC, Bradley A, Skarnes WC (2009) Agouti C57BL/6N embryonic stem cells for mouse genetic resources. Nature Meth 6:493–496

    Article  CAS  Google Scholar 

  42. Gertsenstein M, Nutter L, Reid T, Pereira M, Stanford WL, Rossant J, Nagy A (2010) Efficient generation of germ line transmitting chimeras from C57BL/6N ES cells by aggregation with outbred host embryos. PLoS ONE 5:11260

    Article  Google Scholar 

  43. Smith AG (1991) Culture and differentiation of embryonic stem cells. J Tissue Cult Meth 13:89–94

    Article  Google Scholar 

  44. Stryke D, Kawamoto M, Huang CC, Johns SJ, King LA, Harper CA, Meng EC, Lee RE, Yee A, L'Italien L, Chuang PT, Young SG, Skarnes WC, Babbitt PC, Ferrin TE (2003) BayGenomics: a resource of insertional mutations in mouse embryonic stem cells. Nucl Acids Res 31:278–281

    Article  PubMed  CAS  Google Scholar 

  45. Chaudhry MA, Vitalis TZ, Bowen BD, Piret JM (2008) Basal medium composition and serum or serum replacement concentration influences on the maintenance of murine embryonic stem cells. Cytotechnology 58:173–179

    Article  PubMed  Google Scholar 

  46. Wang Z, Jaenisch R (2004) At most three ES cells contribute to the somatic lineages of chimeric mice and of mice produced by ES-tetraploid complementation. Dev Biol 1 275(1):192–201

    Article  CAS  Google Scholar 

  47. Liu X, Wu H, Loring J, Hormuzdi S, Disteche CM, Bornstein P, Jaenisch R (1997) Trisomy eight in ES cells is a common potential problem in gene targeting and interferes with germ line transmission. Dev Dyn 209:85–91

    Article  PubMed  CAS  Google Scholar 

  48. Longo L, Bygrave A, Grosveld FG, Pandolfi PP (1997) The chromosome make-up of mouse embryonic stem cells is predictive of somatic and germ cell chimaerism. Transgenic Res 6:321–328

    Article  PubMed  CAS  Google Scholar 

  49. Sibilia M, Wagner EF (1995) Strain-dependent epithelial defects in mice lacking the EGF receptor. Science 269:234–8

    Article  PubMed  CAS  Google Scholar 

  50. Threadgill DW, Dlugosz AA, Hansen LA, Tennenbaum T, Lichti U, Yee D, LaMantia C, Mourton T, Herrup K, Harris RC, Barnard JA, Yuspa SH, Coffey RJ, Magnuson T (1995) Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science 269:230–4

    Article  PubMed  CAS  Google Scholar 

  51. Soriano P, Montgomery C, Geske R, Bradley A (1991) Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64:693–702

    Article  PubMed  CAS  Google Scholar 

  52. Hanna J, Markoulaki S, Mitalipova M, Cheng AW, Cassasy JP, Staerk J, Carey BW, Lengner CJ, Foreman R, Love J, Gao Q, Kim J, Jaenisch R (2009) Metastable pluripotent states in NOD-mouse-derived ESCs. Cell Stem Cell 4:513–524

    Article  PubMed  CAS  Google Scholar 

  53. Ohta H, Ohinata Y, Ikawa M, Morioka Y, Sakaide Y, Saitou M, Kanagawa O, Wakayama T (2009) Male germline and embryonic stem cell lines from NOD mice: efficient derivation of GS cells from a nonpermissive strain for ES cell derivation. Biol Reprod 81:1147–1153

    Article  PubMed  CAS  Google Scholar 

  54. Pan Y-X, Xu J, Xu MM, Rossi G, Matulonis JE, Pasternak GW (2009) Involvement of exon 11-associated variants of the mu opioid receptor MOR-1 in heroin, but not morphine, actions. Proc Natl Acad Sci USA 106:4917–4921

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojtek Auerbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Auerbach, W., Auerbach, A.B. (2011). The Importance of Mouse ES Cell Line Selection. In: Pease, S., Saunders, T. (eds) Advanced Protocols for Animal Transgenesis. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20792-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20792-1_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20791-4

  • Online ISBN: 978-3-642-20792-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics