Skip to main content

Redox Chemistry of Sulfur, Selenium and Tellurium Compounds

  • Chapter
  • First Online:
Selenium and Tellurium Chemistry
  • 1549 Accesses

Abstract

The oxidation of organochalcogen compounds to their corresponding radical cations and dications is described. The importance of through space and ‘secondary’ interactions in influencing this oxidation chemistry is illustrated in a number of cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    These model studies are challenging in their own right but further complicated by β-amyloid polymorphism [136].

  2. 2.

    Interestingly this model has been supplanted by one in which Met-35 is directed away from the hydrophobic interior of the peptide (containing the side-chain of Phe-19) toward the exterior where it is close to a second Met residue of another peptide in the oligomer. If oxidation of Met-35 is important in the pathogenesis of Alzheimer’s disease, this suggests the possibility of interaction between the two methionine sulfur atoms. As mentioned above, 1, 5-dithiocane 8, X = Y = S reduces Cu(II).

References

  1. Krossing I (2007) In: Devillanova FA (ed) Handbook of chalcogen chemistry. RSC Publishing, Cambridge; chapter 7.1

    Google Scholar 

  2. Cameron TS, Deeth RJ, Dionne I, Du H, Jenkins HDB, Krossing I, Passmore J, Roobottom HK (2000) Inorg Chem 39:5614–5631

    Article  CAS  Google Scholar 

  3. Glass RS (2002) Spec Chem Mag 22:34–36

    CAS  Google Scholar 

  4. Glass RS (1999) Top Curr Chem 205:1–87

    Article  CAS  Google Scholar 

  5. Detty MR, Logan ME (2004) Adv Phys Org Chem 39:79–145

    Article  CAS  Google Scholar 

  6. Baird NC (1977) J Chem Educ 54:291–293

    Article  CAS  Google Scholar 

  7. Clark T (1990) In: Chatgilialogu C, Asmus K-D (eds) Sulfur-centered reactive intermediates in chemistry and biology, vol 197, NATO ASI Ser A. Plenum, New York, pp 13–18

    Chapter  Google Scholar 

  8. Stowasser R, Glass RS, Hoffmann R (1999) J Chem Soc Perkin Trans 2:1559–1561

    Google Scholar 

  9. Asmus K-D (2001) In: Jonah CD, Rao DSM (eds) Radiation chemistry: present status and future trends. Elsevier, Amsterdam, pp 341–393

    Chapter  Google Scholar 

  10. Nakayama N, Takahashi O, Kikuchi O, Furukawa N (2001) J Mol Struct THEOCHEM 542:215–226

    Article  CAS  Google Scholar 

  11. Maity DK (2002) J Am Chem Soc 124:8321–8328

    Article  CAS  Google Scholar 

  12. Fourré I, Silvi B (2007) Heteroatom Chem 18:135–160

    Article  CAS  Google Scholar 

  13. King JE, Illies AJ (2003) Int J Mass Spectrom 228:429–437

    Article  CAS  Google Scholar 

  14. King JE, Illies AJ (2004) J Phys Chem A 108:3581–3585

    Article  CAS  Google Scholar 

  15. Mishra B, Priyadarsini KJ, Mohan H (2006) J Phys Chem A 110:1894–1900

    Article  CAS  Google Scholar 

  16. Mishra B, Sharma A, Naumov S, Priyadarsini KI (2009) J Phys Chem B 113:7709–7715

    Article  CAS  Google Scholar 

  17. Naumov S, Bonifacic M, Glass RS, Asmus K-D (2009) Res Chem Intermed 35:479–496

    Article  CAS  Google Scholar 

  18. Asmus K-D (1990) In: Chatgilialoglu C, Asmus K-D (eds) Sulfur-centered reactive intermediates in chemistry and biology. Plenum Press, New York, pp 155–172

    Chapter  Google Scholar 

  19. von Sonntag C, Schuchman H-P (1980) In: Patai S (ed) The chemistry of ethers, crown ethers, hydroxyl groups, and their sulphur analogues, vol Pt 2, Suppl E. Wiley, Chichester; chapter 24

    Google Scholar 

  20. Asmus K-D (1984) Meth Enzymol 105:167–178

    Article  CAS  Google Scholar 

  21. von Sonntag C (1987) The chemical basis of radiation biology. Taylor and Francis, London

    Google Scholar 

  22. Waltz WL (1988) In: Fox MA, Chanon M (eds) Photoinduced electron transfer, vol Pt B. Elsevier, Amsterdam, pp 57–109

    Google Scholar 

  23. Takamuku S, Yamamoto Y (1991) In: Tabata Y (ed) Pulse radiolysis. CRC Press, Boca Raton; chapter 18

    Google Scholar 

  24. Pienta NJ (1988) In: Fox MA, Chanon M (eds) Photoinduced electron transfer, vol Pt C. Elsevier, Amsterdam, pp 421–486

    Google Scholar 

  25. Kavarnos GJ (1993) Fundamentals of photoinduced electron transfer. Verlag Chemie, New York

    Google Scholar 

  26. van de Sande CC (1983) In: Patai S (ed) The chemistry of ethers, crown ethers, hydroxyl groups, and their sulphur analogues, vol Pt 1. Wiley, Chichester; chapter 7

    Google Scholar 

  27. Nibbering NMM, Ingermann S, de Kooning LJ (1996) In: Baer T, Ng CY, Powis I (eds) The structure, energetics, dynamics of organic ions. Wiley, New York, pp 283–290

    Google Scholar 

  28. Symons MCR (1984) Chem Soc Rev 13:393–439

    Article  CAS  Google Scholar 

  29. Lund A, Shiotani M (eds) (1991) Radical ion systems properties in condensed phases. Kluwer, Dordrecht

    Google Scholar 

  30. Nenajedenko VG, Schevchenko NE, Balenkova ES, Alabugin IV (2007) In: Devillanova FA (ed) Handbook of chalcogen chemistry. RSC Publishing, Cambridge; chapter 7.2

    Google Scholar 

  31. Westgate TD, Skabara PJ (2007) In: Devillanova FA (ed) Handbook of chalcogen chemistry. RSC Publishing, Cambridge; chapter 12.2

    Google Scholar 

  32. Coffen DL, Chambers JQ, Williams DR, Garrett PE, Canfield ND (1971) J Am Chem Soc 93:2258–2268

    Article  CAS  Google Scholar 

  33. Ferraris J, Cowan DO, Walatka V Jr, Perlstein JH (1973) J Am Chem Soc 95:948–949

    Article  CAS  Google Scholar 

  34. Bechgaard K, Carneiro K, Rasmussen FG, Olsen M, Rindorf G, Jacobsen CS, Pedersen HJ, Scott JC (1981) J Am Chem Soc 103:2440–2442

    Article  CAS  Google Scholar 

  35. Williams JM, Ferraro JR, Thorn RJ, Carlson KD, Geiser U, Wang HH, Kini AM, Whangbo M-H (1992) Organic superconductors. Prentice Hall, Englewood Cliffs

    Google Scholar 

  36. Ishiguro T, Yamaji K, Saito G (1998) Organic superconductors, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  37. Mori T, Kawamoto T, Bando Y, Noda B, Wada H, Matsuzawa T, Taguchi T, Katsuhara M, Aoyagi I, Kambayashi T, Ishikawa K, Takezoe H, Uji S, Takimaya K, Otsubo T (2007) In: Saito G, Wudl F, Haddon RC, Tanigaki K, Enoki T, Katz HE, Maesato M (eds) Multifunctional conducting molecular materials. RSC Publishing, Cambridge, pp 15–22

    Google Scholar 

  38. Gao X, Qiu W, Liu Y, Yu G, Zhu D (2008) Pure Appl Chem 80:2405–2423

    Article  CAS  Google Scholar 

  39. Perepichka IF, Perepichka DF (eds) (2009) Handbook of thiophene-based materials. Wiley-VCH, Chichester

    Google Scholar 

  40. Heeger AJ (2001) Angew Chem Int Ed 40:2591–2611

    Article  CAS  Google Scholar 

  41. Farchioni R, Grosso G (eds) (2001) Organic electronic materials. Berlin, Springer

    Google Scholar 

  42. Roncali J (2005) Chem Soc Rev 34:483–495

    Article  CAS  Google Scholar 

  43. Kim JY, Lee K, Coates NE, Moses D, Nguyen T-Q, Dante M, Heeger AJ (2007) Science 317:222–225

    Article  CAS  Google Scholar 

  44. Günes S, Neugebauer H, Sariciftci NS (2007) Chem Rev 107:1324–1338

    Article  CAS  Google Scholar 

  45. Thompson BC, Fréchet JMJ (2008) Angew Chem Int Ed 47:58–77

    Article  CAS  Google Scholar 

  46. Perepichka IF, Perepichka DF, Meng H, Wudl F (2005) Adv Mater 17:2281–2305

    Article  CAS  Google Scholar 

  47. Grimsdale AC, Chan KL, Martin RE, Jokisz PG, Holmes AB (2009) Chem Rev 109:897–1091

    Article  CAS  Google Scholar 

  48. Murphy AR, Fréchet JMJ (2007) Chem Rev 107:1066–1096

    Article  CAS  Google Scholar 

  49. Patra A, Wijsboom YH, Zade SS, Li M, Sheynin Y, Leitus G, Bendikov M (2008) J Am Chem Soc 130:6734–6736

    Article  CAS  Google Scholar 

  50. Patra A, Bendikov M (2010) J Mater Chem 20:422–433

    Article  CAS  Google Scholar 

  51. Patra A, Wijsboom YH, Leitus G, Bendikov M (2009) Org Lett 11:1487–1490

    Article  CAS  Google Scholar 

  52. Cordes M, Giese B (2009) Chem Soc Rev 38:892–901

    Article  CAS  Google Scholar 

  53. Wang M, Gao J, Müller P, Giese B (2009) Angew Chem Int Ed 48:4232–4234

    Article  CAS  Google Scholar 

  54. Giese B, Wang M, Gao J, Stotlz M, Müller P, Graber M (2009) J Org Chem 74:3621–3625

    Article  CAS  Google Scholar 

  55. Glass RS, Hug GL, Schöneich C, Wilson GS, Kuznetsova L, Lee T-M, Ammam M, Lorance E, Nauser T, Nichol GS, Yamamoto T (2009) J Am Chem Soc 131:13791–13805

    Article  CAS  Google Scholar 

  56. Schöneich C, Pogocki D, Wisniowski P, Hug GL, Bobrowski K (2000) J Am Chem Soc 122:10224–10225

    Article  CAS  Google Scholar 

  57. Schöneich C, Pogocki D, Hug GL, Bobrowski K (2003) J Am Chem Soc 125:13700–13713

    Article  CAS  Google Scholar 

  58. Prelog V, Traynham JG (1963) In: de Mayo P (ed) Molecular rearrangements. Interscience, NewYork, pp 593–615

    Google Scholar 

  59. Cope AC, Martin MM, McKervey MA (1966) Quart Rev Chem Soc 20:119–152

    Article  CAS  Google Scholar 

  60. Roberts AA, Anderson CB (1969) Tetrahedron Lett 10:3883–3885

    Article  Google Scholar 

  61. Kirchen RP, Sorensen TS (1979) J Am Chem Soc 101:3240–3243

    Article  CAS  Google Scholar 

  62. Buzek P, Schleyer PVR, Vancik H, Sunko DE (1991). Chem Commun: 1538–1540

    Google Scholar 

  63. Galasso V (1998) Int J Quantum Chem 170:313–320

    Article  Google Scholar 

  64. Leonard NJ (1979) Acc Chem Res 12:423–429

    Article  CAS  Google Scholar 

  65. Musker WK, Wolford TL (1976) J Am Chem Soc 98:3055–3056

    Article  CAS  Google Scholar 

  66. Musker WK, Wolford TL, Roush PD (1978) J Am Chem Soc 100:6416–6421

    Article  CAS  Google Scholar 

  67. Musker WK (1980) Acc Chem Res 13:200–206

    Article  CAS  Google Scholar 

  68. Wilson GS, Swanson DD, Klug JT, Glass RS, Ryan MD, Musker WK (1979) J Am Chem Soc 101:1040–1042

    Article  CAS  Google Scholar 

  69. Ryan MD, Swanson DD, Glass RS, Wilson GS (1981) J Phys Chem 85:1069–1075

    Article  CAS  Google Scholar 

  70. Brown TG, Hirschon AS, Musker WK (1981) J Phys Chem 85:3767–3771

    Article  CAS  Google Scholar 

  71. Evans DH, Gruhn NE, Jin J, Li B, Lorance E, Okumura N, Macias-Ruvalcaba NA, Zakai UI, Zhang S-Z, Block E, Glass RS (2010) J Org Chem 75:1997–2009

    Article  CAS  Google Scholar 

  72. Deng Y, Illies AJ, James MA, McKee ML, Peschke M (1995) J Am Chem Soc 117:420–428

    Article  CAS  Google Scholar 

  73. de Visser SP, de Konning LJ, Nibbering NMM (1996) Int J Mass Spectrum Ion Process 157/158:283–291

    Article  Google Scholar 

  74. James MA, Illies AJ (1996) J Phys Chem 100:15794–15799

    Article  CAS  Google Scholar 

  75. Furukawa N, Kawada A, Kawai T (1984). J Chem Soc Chem Commun: 1151–1152

    Google Scholar 

  76. Fujihara H, Akaishi R, Furukawa N (1987) J Org Chem 52:4254–4257

    Article  CAS  Google Scholar 

  77. Fujihara H, Akaishi R, Furukawa N (1987) J Chem Soc Chem Commun: 930–931

    Google Scholar 

  78. Fujihara H, Furukawa N (1989) J Mol Struct THEOCHEM 55:261–272

    Article  CAS  Google Scholar 

  79. Iwasaki F, Toyoda N, Akaishi R, Fujihara H, Furukawa N (1988) Bull Chem Soc Jpn 61:2563–2567

    Article  CAS  Google Scholar 

  80. Fujihara H, Akaishi R, Nakamura A, Furukawa N (1990) Tetrahedron Lett 31:6375–6378

    Article  CAS  Google Scholar 

  81. Fujihara H, Akaishi R, Erata T, Furukawa N (1989). Chem Commum: 1789–1790

    Google Scholar 

  82. Fujihara H, Akaishi R, Furukawa N (1993) Tetrahedron 49:1605–1618

    Article  CAS  Google Scholar 

  83. Iwasaki F, Morimoto M, Yasui M, Akaishi R, Fujihara H, Furukawa N (1991) Acta Crystallogr C47:1463–1466

    CAS  Google Scholar 

  84. Fujihara H, Furukawa N (1992) Phosphorus Sulfur Silicon Relat Elem 67:131–134

    Article  CAS  Google Scholar 

  85. Fujihara H, Yabe M, Chiu J-J, Furukawa N (1991) Tetrahedron Lett 32:4345–4348

    Article  CAS  Google Scholar 

  86. Fujihara H, Ninoi T, Akaishi R, Erata T, Furukawa N (1991) Tetrahedron Lett 32:4537–4540

    Article  CAS  Google Scholar 

  87. Fujihara H, Ninoi T, Akaishi R, Erata T, Furukawa N (1991) Tetrahedron Lett 32:4537–4540; footnote 4

    Article  CAS  Google Scholar 

  88. Block E, Dikarev EV, Glass RS, Jin J, Li B, Li X, Zhang S-Z (2006) J Am Chem Soc 128:14949–14961

    Article  CAS  Google Scholar 

  89. Fujihara H, Mima H, Chiu J-J, Furukawa N (1990) Tetrahedron Lett 31:2307–2310

    Article  CAS  Google Scholar 

  90. Fujihara H, Takaguchi Y, Chiu J-J, Erata T, Furukawa N (1992) Chem Lett 21:151–154

    Article  Google Scholar 

  91. Takaguchi Y, Fujihara H, Furukawa N (1996) Organometallics 15:1913–1919

    Article  CAS  Google Scholar 

  92. Nakanishi W, Hayashi S, Toyota S (1998) J Org Chem 63:8790–8800

    Article  CAS  Google Scholar 

  93. Hayashi S, Nakanishi W (1999) J Org Chem 64:6688–6696

    Article  CAS  Google Scholar 

  94. Nakanishi W, Hayashi S, Morinaka S, Sasamori T, Tokitoh N (2008) New J Chem 32:1881–1889

    Article  CAS  Google Scholar 

  95. Nakayama N, Takahashi O, Kikuchi O, Furukawa N (2000) Heteroatom Chem 11:31–41

    Article  CAS  Google Scholar 

  96. Brundle CR, Baker A (1977) Electron spectroscopy: theory techniques, and applications, vol 1. Academic, London

    Google Scholar 

  97. Rabalais JW (1977) Principles of ultraviolet photoelectron spectroscopy. Wiley, New York

    Google Scholar 

  98. Ghosh PK (1983) Introduction to photoelectron spectroscopy. Wiley, New York

    Google Scholar 

  99. Barr TL (1994) Modern ESCA. The principles and practice of x-ray photoelectron spectroscopy. CRC Press, Boca Raton

    Google Scholar 

  100. Koopmans T (1933) Physica 1:104–113

    Article  CAS  Google Scholar 

  101. Glass RS, Broeker JL, Jatcko ME (1989) Tetrahedron 45:1263–1272

    Article  CAS  Google Scholar 

  102. Nadjo L, Savéant JM (1973) Electroanal Chem Interfac Electrochem 48:113–145

    Article  CAS  Google Scholar 

  103. Houmam A (2008) Chem Rev 108:2180–2237

    Article  CAS  Google Scholar 

  104. Hoffmann R (1971) Acc Chem Res 4:1–9

    Article  CAS  Google Scholar 

  105. Gleiter R (1974) Angew Chem Int Ed 13:696–701

    Article  Google Scholar 

  106. Brunck TK, Weinhold F (1976) J Am Chem Soc 98:4392–4393

    Article  CAS  Google Scholar 

  107. Setzer WN, Glass RS (1988) In: Glass RS (ed) Conformational analysis of medium-sized heterocycles. Verlag Chemie, Weinheim

    Google Scholar 

  108. Drouin BJ, Madden JF, Gruhn NE, Kukolich SG, Barfield M, Glass RS (1997) J Phys Chem A 101:9180–9184

    Article  CAS  Google Scholar 

  109. Glass RS, Block E, Gruhn NE, Jin J, Lorance E, Zakai UI, Zhang S-Z (2007) J Org Chem 72:8290–8297

    Article  CAS  Google Scholar 

  110. Block E, Glass RS, Gruhn N, Jin J, Lorance E, Zakai UI, Zhang S-Z (2008) Phosphorus Sulfur Silicon 183:856–862

    Article  CAS  Google Scholar 

  111. Glass RS, Radspinner AM, Singh WP (1992) J Am Chem Soc 114:4921–4923

    Article  CAS  Google Scholar 

  112. Glass RS, Guo Q, Liu Y (1997) Tetrahedron 53:12273–12286

    Article  CAS  Google Scholar 

  113. Li H, Nishiwaki K, Itami K, Yoshida J (2001) Bull Chem Soc Jpn 74:1717–1725

    Article  CAS  Google Scholar 

  114. Yoshida J, Maekawa T, Murata T, Matsunaga S, Isoe S (1990) J Am Chem Soc 112:1962–1970

    Article  CAS  Google Scholar 

  115. Block E, Yencha AJ, Aslam M, Eswarakrishnan V, Lao J, Sano J (1988) J Am Chem Soc 110:4748–4753

    Article  CAS  Google Scholar 

  116. Block E, Aslam M (1988) Tetrahedron 44:281–324

    Article  CAS  Google Scholar 

  117. Block E, Glass RS, Dikarev EV, Gruhn NE, Jin J, Li B, Lorance E, Zakai UI, Zhang S-Z (2007) Heteroatom Chem 18:509–515

    Article  CAS  Google Scholar 

  118. Glass RS, Block E, Lorance E, Zakai UI, Gruhn NE, Jin J, Zhang S-Z (2006) J Am Chem Soc 128:12685–12692

    Article  CAS  Google Scholar 

  119. Werst DW, Trifunac AD (1991) J Phys Chem 95:3466–3477

    Article  CAS  Google Scholar 

  120. Werst DW (1991) J Am Chem Soc 113:4345–4346

    Article  CAS  Google Scholar 

  121. Werst DW (1992) J Phys Chem 96:3640–3646

    Article  CAS  Google Scholar 

  122. Morgan RS, Tabsch CE, Gushard RH, McAdon JM, Warme PK (1978) Int J Peptide Protein Res 11:209–217

    Article  CAS  Google Scholar 

  123. Breinlinger EC, Keenan CJ, Rotello VM (1998) J Am Chem Soc 120:8608–8609

    Article  Google Scholar 

  124. Rotello VM (1998) Heteroatom Chem 9:605–606

    Article  CAS  Google Scholar 

  125. Low DW, Hill MG (1998) J Am Chem Soc 120:11536–11537

    Article  CAS  Google Scholar 

  126. Butterfield DA (2002) Free Radic Res 36:1307–1313

    Article  CAS  Google Scholar 

  127. Butterfield DA, Kanski J (2002) Peptides 23:1299–1309

    Article  CAS  Google Scholar 

  128. Butterfield DA (2003) Curr Med Chem 10:2651–2659

    Article  CAS  Google Scholar 

  129. Schöneich C (2005) Biochim Biophys Acta 1703:111–119

    Article  CAS  Google Scholar 

  130. Huang X, Atwood CS, Hartshorn MA, Multhap G, Goldstein LE, Scarpa RC, Cuajungco MP, Gray DN, Lim J, Moir RD, Tanzi RE, Bush AI (1999) Biochemistry 38:7609–7616

    Article  CAS  Google Scholar 

  131. Huang X, Cuajungco MP, Atwood CS, Hartshorn MA, Tyndall JDA, Hanson GR, Stokes KC, Leopold M, Multhaup G, Goldstein LE, Scarpa RC, Saunders AJ, Lim J, Moir RD, Glabe C, Bowden EF, Masters CL, Fairlie DP, Tanzi RE, Bush AI (1999) J Biol Chem 274:37111–37116

    Article  CAS  Google Scholar 

  132. Opuzo C, Huang X, Cherny RA, Moir RD, Roher AE, White AR, Cappai R, Masters EL, Tanzi RE, Inestrosa NC, Bush AI (2002) J Biol Chem 277:40302–40308

    Article  CAS  Google Scholar 

  133. Del Rio MJ, Velez-Pardo C (2004) Curr Med Chem Cent Nerv Syst Agents 4:279–285

    Article  Google Scholar 

  134. Petkova AT, Ishii Y, Bulbach JJ, Antzutkin ON, Leapman RD, Delaglio F, Tycko R (2002) Proc Natl Acad Sci USA 99:16742–16747

    Article  CAS  Google Scholar 

  135. Petkova AT, Yau W-M, Tycko R (2006) Biochemistry 45:498–512

    Article  CAS  Google Scholar 

  136. Miller Y, Ma B, Nussinov R (2010) Chem Rev 110:4820–4839

    Article  CAS  Google Scholar 

  137. Luhrs T, Ritter C, Adrian M, Riek-Loher D, Bohrman B, Döbeli H, Schubert D, Riek R (2005) Proc Natl Acad Sci USA 102:17342–17347

    Article  CAS  Google Scholar 

  138. Ma B, Nussinov R (2006) Curr Opin Chem Biol 10:445–452

    Article  CAS  Google Scholar 

  139. Horn AHC, Sticht H (2010) J Phys Chem B 114:2219–2226

    Article  CAS  Google Scholar 

  140. Chung WJ, Ammam M, Gruhn NE, Nichol GS, Singh WP, Wilson GS, Glass RS (2009) Org Lett 11:397–400

    Article  CAS  Google Scholar 

  141. Coleman BR, Glass RS, Setzer WN, Prabhu UDG, Wilson GS (1982) Adv Chem Ser 201:417–441

    Article  CAS  Google Scholar 

  142. Zakai UI, Bloch-Mechkour A, Jacobsen NE, Abrell L, Lin G, Nichol GS, Bally T, Glass RS (2010) J Org Chem 75:8363–8371

    Article  CAS  Google Scholar 

  143. Ammam M, Zakai UI, Wilson GS, Glass RS (2010) Pure Appl Chem 82:555–563

    Article  CAS  Google Scholar 

  144. Elinson MN, Simonet J, Toupet L (1993) J Electroanal Chem 350:117–132

    Article  CAS  Google Scholar 

  145. Jones IW, Tebby JC (1979) J Chem Soc Perkin Trans 2:217–218

    Google Scholar 

  146. Emsley JW, Longeri M, Veracini CA, Catalano D, Pedulli GF (1982) J Chem Soc Perkin Trans 2:1289–1296

    Google Scholar 

  147. Vondrak T, Sato S, Spirko V, Kimura K (1997) J Phys Chem A 101:8631–8638

    Article  CAS  Google Scholar 

  148. Frolov YuL, Vashchenko AV (2003) Russ J Org Chem 39:1412–1414

    Article  CAS  Google Scholar 

  149. Baciocchi E, Gerini MF (2004) J Phys Chem A 108:2332–2338

    Article  CAS  Google Scholar 

  150. Dewar PS, Ernstbrunner E, Gilmore JR, Godfrey M, Mellor JM (1974) Tetrahedron 30:2455–2459

    Article  CAS  Google Scholar 

  151. Schweig A, Thon N (1976) Chem Phys Lett 38:482–485

    Article  CAS  Google Scholar 

  152. Colle MD, Distefano G, Jones D, Modelli A (2000) J Phys Chem A 104:8227–8233

    Article  CAS  Google Scholar 

  153. Bossa M, Morpurgo S, Stranges S (2002) J Mol Struct THEOCHEM 618:155–164

    Article  CAS  Google Scholar 

  154. Jouikov V (1995) J Electroanal Chem 398:159–164

    Article  Google Scholar 

  155. Jouikov V, Ivkor V (1995) Electrochim Acta 40:1617–1622

    Article  CAS  Google Scholar 

  156. Tschmutowa G, Block H (1976) Z Naturforsch B 31:1611–1615

    Google Scholar 

  157. Baker AD, Armen GH, Guang-di Y (1981) J Org Chem 46:4127–4130

    Article  CAS  Google Scholar 

  158. Bzheovskii VM, Kapustin EG (2003) Russ J Gen Chem 73:54–60

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard S. Glass .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Glass, R.S. (2011). Redox Chemistry of Sulfur, Selenium and Tellurium Compounds. In: Woollins, J., Laitinen, R. (eds) Selenium and Tellurium Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20699-3_3

Download citation

Publish with us

Policies and ethics