Skip to main content

Bulk Analysis of Nonconducting Materials

  • Chapter
  • First Online:
Laser-Induced Breakdown Spectroscopy
  • 3373 Accesses

Abstract

This chapter describes LIBS investigations for a bulk characterization or analysis of nonconducting materials, such as polymers, waste electric and electronic equipment, slag, soil, cement, droplets, gases, particulates, and aerosoles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Brandrup, M. Bittner, W. Michaeli, G. Menges (eds.), Die Wiederverwertung von Kunststoffen (Carl Hanser Verlag, München, 1995)

    Google Scholar 

  2. C. Delgado, L. Barruetabeña, O. Salas, in Assessment of the Environmental Advantages and Drawbacks of Existing and Emerging Polymers Recovery Processes, ed. by O. Wolf, EC Joint Research Center, 22939 EN, 2007

    Google Scholar 

  3. H. Lucht, U. Plauschin, H. Dürr, Kunststoffe mit Infrarot-Messung sortenrein trennen. Umwelt 23, 443–444 (1993)

    Google Scholar 

  4. D. Scott, A two-colour near-infrared sensor for sorting recycled plastic waste. Meas. Sci. Technol. 6, 156–159 (1995)

    Article  ADS  Google Scholar 

  5. M. Alam, S. Stanton, Sorting of waste plastics using near-infrared spectroscopy and neural networks. Process Contr. Qual. 4, 245–252 (1993)

    Google Scholar 

  6. R. Feldhoff, D. Wienke, K. Cammann, H. Fuchs, On-line post consumer package identification by NIR spectroscopy combined with a fuzzy ARTMAP classifier in an industrial environment. Appl. Spectrosc. 51, 362–368 (1997)

    Article  ADS  Google Scholar 

  7. N. Eisenreich, T. Rhode, Identifizieren von Kunststoffen. Kunststoffe 86, 222–224 (1996)

    Google Scholar 

  8. N. Basta, K. Fouhy, K. Gilges, A. Shanley, S. Hshio, Chem. Eng. 11, 37–43 (1990)

    Google Scholar 

  9. see e.g., products of the following companies: LLA Instruments GmbH, Justus-von-Liebig-Str. 9, 12489 Berlin, www.lla.de; National Recovery Technologies Inc., 566 Mainstream Dr., Suite 300, Nashville, TN, http://www.nrtsorters.com, 2010

  10. http://www.dradio.de/dlf/sendungen/firment/1020957, 2009/8/21

  11. J. Jansen, C. van Hastenberg, Identifikation von Kunststoffteilen. Kunststoffe 84, (1994) 51–54

    Google Scholar 

  12. R. Sattmann, I. Mönch, H. Krause, R. Noll, S. Couris, A. Hatziapostolou, A. Mavromanolakis, C. Fotakis, E. Larrauri, R. Miguel, Laser-induced breakdown spectroscopy for polymer identification. Appl. Spectr. 52, 456–461 (1998)

    Article  ADS  Google Scholar 

  13. R. Sattmann, V. Sturm, R. Noll, Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses. J. Phys. D Appl. Phys. 28, 2181–2187 (1995)

    Article  ADS  Google Scholar 

  14. A. Zell, Simulation Neuronaler Netze (Addison Wesley, Berlin, 1994)

    MATH  Google Scholar 

  15. R. Pearse, A. Gaydon, The Identification of Molecular Spectra (Chapman and Hall, London, 1976), p. 83

    Book  Google Scholar 

  16. H. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964), p. 305, 538

    Google Scholar 

  17. R. Hecht-Nielsen, Neurocomputing (Addison Wesley, Berlin, 1990)

    Google Scholar 

  18. Ullmann’s Encyclopedia of Industrial Chemistry, vol. A 20 (VCH Publishers, Weinheim, 1992)

    Google Scholar 

  19. European Project, Development of multipurpose industrial units for recycling of plastic wastes by on-line pattern recognition of polymer features (Sure-Plast), contract no. BRPR-CT98–0783, project no. BE97–4890, 2001, samples prepared by Gaiker, Bilbao, Spain

    Google Scholar 

  20. M. Stepputat, R. Noll, On-line detection of heavy metals and brominated flame retardants in technical polymers with laser-induced breakdown spectrometry. Appl. Optics 42, 6210–6220 (2003)

    Article  ADS  Google Scholar 

  21. J. Marshall, J. Carrol, J.S. Crighton, C.L.R. Barnard, Industrial analysis: metals, chemicals and advanced materials. J. Anal. At. Spectrom. 9, 319–356 (1994)

    Article  Google Scholar 

  22. R. Zenobi, Modern laser mass spectrometry, Fresen. J. Anal. Chem. 348, 506–509 (1994)

    Article  Google Scholar 

  23. C. Lazik, R.K. Marcus, Electrical and optical characteristics of a radio frequency glow discharge atomic emission source with dielectric sample atomization. Spectrochim. Acta B 48, 1673–1689 (1993)

    Article  ADS  Google Scholar 

  24. Z. Weiss, New method of calibration for glow discharge optical emission spectrometry. J. Anal. At. Spectrom. 9, 351–354 (1994)

    Article  Google Scholar 

  25. A. Golloch, D. Siegmund, Sliding spark spectroscopy – rapid survey analysis of flame retardants and other additives in polymers. Fresen. J. Anal. Chem. 358, 804–811 (1997)

    Article  Google Scholar 

  26. J. Anzano, I. Gornushkin, B. Smith, J. Winefordner, Laser-induced plasma spectroscopy for plastic identification. Polym. Eng. Sci. 40, 2423–2429 (2000)

    Article  Google Scholar 

  27. M. Tran, Q. Sun, B. Smith, J. Winefordner, Determination of F, Cl and Br in solid organic compounds by laser-induced plasma spectroscopy. Appl. Spectrosc. 55, 739–744 (2001)

    Google Scholar 

  28. H. Fink, U. Panne, R. Niessner, Analysis of recycled thermoplasts from consumer electronics by laser-induced plasma spectroscopy. Anal. Chim. Acta 440, 17–25 (2001)

    Article  Google Scholar 

  29. H. Fink, U. Panne, R. Niessner, Process analysis of recycled thermoplasts from consumer electronics by laser-induced plasma spectroscopy. Anal. Chem. 74, 4334–4342 (2002)

    Article  Google Scholar 

  30. NIST Atomic spectra data base, http://physics.nist.gov/cgi-bin/AtData/main_asd

  31. M. Kraushaar, R. Noll, H.-U. Schmitz, Slag analysis with laser-induced breakdown spectrometry. Appl. Spectrosc. 57, 1282–1287 (2003)

    Article  ADS  Google Scholar 

  32. R. Wisbrun, I. Schechter, R. Niessner, H. Schroder, K. Kompa, Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy. Anal. Chem. 66, 2964–2975 (1994)

    Article  Google Scholar 

  33. L. St-Onge, M. Sabsabi, P. Cielo, Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode. Spectrochim. Acta B 53, 407–415 (1998)

    Article  ADS  Google Scholar 

  34. F. Colao, V. Lazic, R. Fantoni, S. Pershin, A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminium samples. Spectrochim. Acta B 57, 1167–1179 (2002)

    Article  ADS  Google Scholar 

  35. National Standard of Germany, DIN 53 804–1,Statistische Auswertung, Teil 1: Kontinuierliche Merkmale (Beuth, Berlin, April 2002)

    Google Scholar 

  36. A. Dobney, A. Mank, K. Grobecker, P. Conneely, C. de Koster, Laser ablation inductively coupled plasma mass spectrometry as a tool for studying heterogeneity within polymers. Anal. Chim. Acta 423, 9–19 (2000)

    Article  Google Scholar 

  37. R. Kaiser, W. Gottschalk, Elementare Tests zur Beurteilung von Messdaten (Bibliographisches Institut, Mannheim, 1984)

    Google Scholar 

  38. National Standard of Germany, DIN 32 645, Chemische Analytik – Nachweis-, Erfassungs- und Bestimmungsgrenze (Beuth Verlag, Berlin, September 2006)

    Google Scholar 

  39. A. Cremers, D. Romero, An evaluation of factors affecting the analysis of metals using laser-induced breakdown spectroscopy (LIBS), in Remote Sensing, ed. by R.T. Menzies, Proc. SPIE 644, 7–12 (1986)

    Google Scholar 

  40. H. Bennet, G. Oliver, XRF Analysis of Ceramics, Minerals and Allied Materials (Wiley, New York, 1992)

    Google Scholar 

  41. J. Vadillo, J. Laserna, Laser-induced breakdown spectroscopy of silicate, vanadate and sulfide rocks. Talanta 43, 1149–1154 (1996)

    Article  Google Scholar 

  42. H. Wiggenhauser, D. Schaurich, G. Wilsch, LIBS for non-destructive testing of element distributions on surfaces. NDT&E Int. 31, 307–313 (1998)

    Article  Google Scholar 

  43. A. Knight, N. Scherbarth, D. Cremers, M. Ferris, Characterisation of laser-induced breakdown spectroscopy (LIBS) for application to space exploration. Appl. Spectrosc. 54, 331–340 (2000)

    Article  ADS  Google Scholar 

  44. F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, C. Becker, Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence. Spectrochim. Acta B 56, 933–945 (2001)

    Article  ADS  Google Scholar 

  45. G. Doujak, R. Mertens, W. Ramb, J. Flock, J. Geyer, S. Lüngen, Slag analysis by laser-induced breakdown spectroscopy. Stahl Eisen 121, 53–58 (2001)

    Google Scholar 

  46. H. Martens, T. Næs, Multivariate Calibration (Wiley, New York, 1998)

    Google Scholar 

  47. B. Bergmann, N. Bannenberg, Schlackenführung und Schlackenoptimierung in der Sekundärmetallurgie. Stahl Eisen 111, 125–131 (1991)

    Google Scholar 

  48. H. Lachmund, Y. Xie, High purity steels: a challenge to improved steelmaking processes. Ironmak. Steelmak. 30, 125–129 (2003)

    Article  Google Scholar 

  49. V. Sturm, H.-U. Schmitz, T. Reuter, R. Fleige, R. Noll, Fast vacuum slag analysis in a steel works by laser-induced breakdown spectroscopy. Spectrochim. Acta B 63, 1167–1170 (2008)

    Article  ADS  Google Scholar 

  50. C. López-Moreno, S. Palanco, J.J. Laserna, Quantitative analysis of samples at high temperature with remote laser-induced breakdown spectrometry using a room-temperature calibration plot. Spectrochim. Acta B 60, 1034–1039 (2005)

    Article  ADS  Google Scholar 

  51. V. Sturm, Optical micro-lens array for laser plasma generation in spectrochemical analysis. J. Anal. At. Spectrom. 22, 1495–1500 (2007)

    Article  Google Scholar 

  52. K. Esbensen, Multivariate Data Analysis, 5th edn. (Camo Process, Oslo, 2002), p. 159

    Google Scholar 

  53. R. Wisbrun, I. Schechter, R. Niessner, H. Schröder, K.L. Kompa, Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy. Anal. Chem. 66, 2964–2975 (1994)

    Article  Google Scholar 

  54. D. Cremers, J. Barefield Il, A. Koskelo, Remote elemental analysis by laser- induced breakdown spectroscopy using a fiber-optic cable. Appl. Spectrosc. 49, 857–860 (1995)

    Article  ADS  Google Scholar 

  55. F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, C. Becker, Spectrochemical analysis of heavy metals in soils with laser-based techniques, Abstracts of the lecture groups “Environmental Technology and Fundamentals of Laser-aided In-situ Soil Analysis”, Int. Meeting on Chem. Eng., Environmental Protection and Biotechnology, ACHEMA 2000, Conf. Proc. 2000, DECHEMA e.V., Frankfurt a. M., 449–451 (2000)

    Google Scholar 

  56. R. Multari, L. Foster, D. Cremers, M. Ferris, Effect of sampling geometry on elemental emissions in laser-induced breakdown spectroscopy. Appl. Spectrosc. 50, 1483–1499 (1996)

    Article  ADS  Google Scholar 

  57. G. Theriault, S. Bodensteiner, S. Lieberman, A real-time fiber-optic LIBS probe for the in situ delineation of metals in soils. Field Anal. Chem. Technol. 2, 117–125 (1998)

    Article  Google Scholar 

  58. B. Miles, J. Cortes, Subsurface heavy-metal detection with the use of a laser-induced breakdown spectroscopy (LIBS) penetrometer system. Field Anal. Chem. Technol. 2, 75–87 (1998)

    Article  Google Scholar 

  59. Mitteilungen der Länderarbeitsgemeinschaft Abfall (LAGA) Nr. 20: Anforderungen an die stoffliche Verwertung von mineralischen Reststoffen/AbfällenTechnische Regeln (Erich Schmidt Verlag, Berlin, 1995)

    Google Scholar 

  60. K. Yamamoto, D. Cremers, M. Ferris, L. Foster, Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument. Appl. Spectrosc. 50, 222–232 (1996)

    Article  ADS  Google Scholar 

  61. A. Eppler, D. Cremers, D. Hickmott, M. Ferris, A.C. Koskelo, Matrix-effects in the detection of Pb and Ba in soils using laser-induced breakdown spectroscopy. Appl. Spectrosc. 50, 1175–1181 (1996)

    Article  ADS  Google Scholar 

  62. A. Ciucci, V. Palleschi, S. Rastelli, R. Barbini, F. Colao, R. Fantoni, A. Palucci, S. Ribezzo, H. van der Steen, Trace pollutants analysis in soil by a time-resolved laser-induced breakdown spectroscopy technique. Appl. Phys. B 63, 185–190 (1996)

    Article  ADS  Google Scholar 

  63. C. Becker, F. Hilbk-Kortenbruck, R. Noll, Preparation of soil samples containing heavy metals for the calibration of laser-based analytical techniques, Abstracts of the lecture groups “Environmental Technology and Fundamentals of Laser-aided In-situ Soil Analysis”, Int. Meeting on Chem. Eng., Environmental Protection and Biotechnology, ACHEMA 2000, Conf. Proc. 2000, DECHEMA e.V., Frankfurt a.M., 394–396 (2000)

    Google Scholar 

  64. R. Springenschmidt, Arbeitskreis “Prüfverfahren Chlorideindringtiefe” des Deutschen Ausschusses für Stahlbeton: Anleitung zur Bestimmung des Chloridgehaltes von Beton, Beuth Verlag GmbH, Berlin; Research group “Test methods for chloride penetration depth” of Deutscher Ausschuss für Stahlbeton: instruction for the determination of chloride content in concrete (Beuth Verlag GmbH, Berlin, 1989)

    Google Scholar 

  65. American Society for Testing and Materials (ASTM). Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration, ASTM C 1202–97 (ASTM, West Conshohocken, 1997)

    Google Scholar 

  66. F. Weritz, D. Schaurich, A. Taffe, G. Wilsch, Effect of heterogeneity on the quantitative determination of trace elements in concrete. Anal. Bioanal. Chem. 385, 248–255 (2006)

    Article  Google Scholar 

  67. V. Burakov, V. Kiris, S. Raikov, Optimization of conditions for spectral determination of chlorine content in cement-based materials. J. Appl. Spectrom. 74, 321–327 (2007)

    Article  ADS  Google Scholar 

  68. F. Weritz, D. Schaurich, G. Wilsch, Detector comparison for sulfur and chlorine detection with laser induced breakdown spectroscopy in the near infrared. Spectrochim. Acta B 62, 1504–1511 (2007)

    Article  ADS  Google Scholar 

  69. J. Aguilera, C. Aragon, A comparison of the temperatures and electron densities of laser-produced plasmas obtained in air, argon, and helium at atmospheric pressure. Appl. Phys. A 69, S475-S478 (1999)

    Article  ADS  Google Scholar 

  70. G. Asimellis, A. Giannoudakos, M. Kompitsas, Near-IR bromine LIBS detection and ambient gas effects on emission line asymmetric Stark broadening and shift. Spectrochim. Acta B 61, 1270–1278 (2006)

    Article  ADS  Google Scholar 

  71. M. Tran, Q Sun, B.W. Smith, J. Wineforder, Determination of F, Cl and Br in solid organic compounds by laser-induced plasma spectroscopy. Appl. Spectrosc. 52, 739–744 (1999)

    Google Scholar 

  72. G. Asimellis, S. Hamilton, A. Giannoudakos, M. Kompitsas, Controlled inert gas environment for enhanced chlorine and fluorine detection in the visible and near-infrared by laser-induced breakdown spectroscopy. Spectrochim. Acta B 60, 1132–1139 (2005)

    Article  ADS  Google Scholar 

  73. L. Radziemski, D. Cremers, K. Benelli, C. Khoo, R. Harris, LIBS-based Detection of As, Br, C, Cl, P and S in the VUV spectral region in a Mars atmosphere. Lunar and Planetary Science XXXVI, 1747 (2005)

    Google Scholar 

  74. C. Gehlen, E. Wiens, R. Noll, G. Wilsch, K. Reichling, Chlorine detection in cement with laser-induced breakdown spectroscopy in the infrared and ultraviolet spectral range. Spectrochim. Acta B 64, 1135–1140 (2009)

    Article  ADS  Google Scholar 

  75. H. Lancelin, L. Dudragne, P. Adam, J. Amouroux, Time resolved laser induced breakdown spectroscopy for fluorine; chlorine and sulfur detection using an optical fibre probe. High Temp. Mater. Proc. 4, 109–126 (2000)

    Google Scholar 

  76. N. Konjevic, Plasma broadening and shifting of non-hydrogenic spectral lines: present status and applications. Phys. Rep. 316, 339–401 (1999)

    Article  ADS  Google Scholar 

  77. M. Dimitrijevic, S. Sahal-Brechot, Stark broadening of Ca II spectral lines. J. Quant. Spectrosc. Radiat. Transfer 49, 157–164 (1993)

    Article  ADS  Google Scholar 

  78. L. Peter, R. Noll, Material ablation and plasma state for single and collinear double pulses interacting with iron samples at ambient gas pressures below 1 bar. Appl. Phys. B 86, 159–167 (2007)

    Article  ADS  Google Scholar 

  79. R. Knopp, F. Scherbaum, J. Kim, Laser-induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions. Fresen. J. Anal. Chem. 355, 16–20 (1996)

    Article  Google Scholar 

  80. B. Welz, Speciation analysis: where is it going? An attempt at a forecast. Spectrochim. Acta B 53, 169–175 (1998)

    ADS  Google Scholar 

  81. R. Lobinski, J. Szpunar, Biochemical speciation analysis by hyphenated techniques. Anal. Chim. Acta 400, 321–332 (1999)

    Article  Google Scholar 

  82. A. Timerbraev, Element speciation analysis by capillary electrophoresis. Talanta 52, 573–606 (2000)

    Article  Google Scholar 

  83. http://www.agilent.com

  84. D. Beauchemin, Inductively coupled plasma mass spectrometry. Anal. Chem.74, 2873–2894 (2002)

    Article  Google Scholar 

  85. P. Kenedy, D. Hammer, B. Rockwell, Laser-induced breakdown in aqueous media. Prog. Quant. Electr. 21, 155–248 (1997)

    Article  ADS  Google Scholar 

  86. R. Knopp, F. Scherbaum, J. Kim, Laser-induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions. Fresen. J. Anal. Chem. 355, 16–20 (1996)

    Article  Google Scholar 

  87. P. Fichet, P. Mauchien, J. Wagner, C. Moulin, Quantitative elemental determination in water and oil by laser-induced breakdown spectrometry. Anal. Chim. Acta 429, 269–278 (2001)

    Article  Google Scholar 

  88. W. Ho, C. Ng, N. Cheung, Spectrochemical analysis of liquids using laser induced plasma emission: effects of laser wavelength. Appl. Spectrosc. 51, 87–91 (1997)

    Article  ADS  Google Scholar 

  89. J. Carranza, B. Fisher, G. Yoder, D. Hahn, On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy. Spectrochim. Acta B 56, 851–864 (2001)

    Article  ADS  Google Scholar 

  90. H. Archontaki, S. Crouch, Evaluation of an isolated droplet sample introduction system for laser-induced breakdown spectroscopy. Appl. Spectrosc. 42, 741–746 (1988)

    Article  ADS  Google Scholar 

  91. G. Arca, A. Ciucci, V. Palleschi, S. Rastelli, E. Tognoni, Trace element analysis in water by laser-induced breakdown spectroscopy technique. Appl. Spectrosc. 51, 1102–1105 (1997)

    Article  ADS  Google Scholar 

  92. A. Pichahchy, D. Cremers, M. Ferris, Elemental analysis of metals under water using laser-induced breakdown spectroscopy. Spectrochim. Acta B 52, 25–39 (1997)

    Article  ADS  Google Scholar 

  93. R. Wal, T. Ticich, J. West, P. Householder, Trace metal detection by laser-induced breakdown spectroscopy. Appl. Spectrosc. 53, 1226–1236 (1999)

    Article  ADS  Google Scholar 

  94. A. Kuwako, Y. Uchida, K. Maeda, Supersensitive detection of sodium in water with use of dual-pulse laser-induced breakdown spectroscopy. Appl. Optics 42, 6052–6056 (2003)

    Article  ADS  Google Scholar 

  95. K. Lo, N. Cheung, ArF laser-induced plasma spectroscopy for part-per-billion analysis of metal ions in aqueous solution. Appl. Spectrosc. 56, 682–688 (2002)

    Article  ADS  Google Scholar 

  96. X. Pu, W. Ma, N. Cheung, Sensitive elemental analysis of aqueous colloids by laser-induced plasma spectroscopy. Appl. Phys. Lett. 83, 3416–3418 (2003)

    Article  ADS  Google Scholar 

  97. C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, P. Koke, Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy. Spectrochim. Acta B 60, 993–1001 (2005)

    Article  ADS  Google Scholar 

  98. H. Ulmke, T. Wriedt, H. Lohner, K. Bauckhage, The piezoelectric droplet generator – a versatile tool for dispensing applications and calibration of particle sizing instruments, Precis. Eng. – Nanotechnology, Proc. of the 1st Int. Euspen Conf., vol. 2 (Shaker Verlag, Aachen, 1999), pp. 290–293

    Google Scholar 

  99. C. Haisch, R. Niessner, O. Matveev, U. Panne, N. Omenetto, Element-specific determination of chlorine in gases by laser-induced-breakdown-spectroscopy LIBS. Fresen. J. Anal. Chem. 356, 21–26 (1996)

    Article  Google Scholar 

  100. M. Tran, B.W. Smith, D. Hahn, J. Winefordner, Detection of gaseous and particulate fluorides by laser-induced breakdown spectroscopy. Appl. Spectrosc. 55, 1455–1461 (2001)

    Article  ADS  Google Scholar 

  101. D. Plemmons, C. Parigger, J. Lewis, J. Hornkohl, Analysis of combined spectra of NH and N2. Appl. Optics 37, 2493–2498 (1998)

    Article  ADS  Google Scholar 

  102. A. Schwebel, A. Ronn, Spectroscopy of laser-induced dielectric breakdown in gas mixtures. Chem. Phys. Lett. 100, 178–182 (1983)

    Article  ADS  Google Scholar 

  103. M. Casini, M. Harith, V. Palleschi, A. Salvetti, D. Singh, M. Vaselli, Time-resolved LIBS experiment for quantitative determination of pollutant concentrations in air. Laser Part. Beams 9, 633–639 (1991)

    Article  ADS  Google Scholar 

  104. I. Glassman, Combustion (Academic, San Diego, 1996), pp. 20–29

    Google Scholar 

  105. A. Sandrowitz, J. Cooke, N. Glumac, Flame emission spectroscopy for equivalence ratio monitoring. Appl. Spectrosc. 52, 658–662 (1998)

    Article  ADS  Google Scholar 

  106. R. Schmieder, Combustion applications of laser-induced breakdown spectroscopy, in Proceedings of the Electro-optics Laser Conference, Cahners, Chicago, 1981, pp. 17–27

    Google Scholar 

  107. X. Phuoc, F. White, Laser-induced spark for measurements of the fuel-to-air ratio of a combustible mixture. Fuel 81, 1761–1765 (2002)

    Article  Google Scholar 

  108. V. Sturm, R. Noll, Laser-induced breakdown spectroscopy of gas mixtures of air, CO2, N2, and C3H8 for simultaneous C, H, O, and N measurement. Appl. Optics 42, 6221–6225 (2003)

    Article  ADS  Google Scholar 

  109. K. Fieweger, R. Blumenthal, G. Adomeit, Self-ignition of S.I. engine model fuels: shock tube investigation at high pressure. Combust. Flame 109, 599–619 (1997)

    Google Scholar 

  110. K. Kuwahara, H. Ando, Diagnostics of in-cylinder flow, mixing and combustion in gasoline engines. Meas. Sci. Technol. 11, R95–R111 (2000)

    Article  ADS  Google Scholar 

  111. D. Lide (ed.), CRC Handbook of Chemistry and Physics, 73rd edn. (CRC Press, Boca Raton, 1992), pp. 14–11

    Google Scholar 

  112. V. Sturm, A. Brysch, R. Noll, H. Brinkmann, R. Schwalbe, K. Mülheims, P. Luoto, P. Mannila, K. Heinänen, D. Carrascal, L. Sancho, A. Opfermann, K. Mavrommatis, H.W. Gudenau, A. Hatziapostolou, S. Couris, Online multi-element analysis of the top gas of a blast furnace, in 7th Int. Workshop Progress in Analytical Chemistry in the Steel and Metal Industries, ed. by J. Angeli (Glückauf GmbH, Essen, 2006), pp. 183–188

    Google Scholar 

  113. A. Brysch, V. Sturm, R. Noll, H. Denecke-Arnold, H. Brinkmann, K. Mülheims, A. Opfermann, K. Mavrommatis, H.-W. Gudenau, K. Heinänen, Laser-based elemental analysis of the top gas of a blast furnace, Int. Symp. on Photonics in Measurement, 11–12 June 2002, Aachen, Germany, VDI-Berichte Nr. 1694, 2002, 117–123, ISBN 3-18-091694-X

    Google Scholar 

  114. European commission, Directorate C: information note: airborne particles and their health effects in Europe, ENV.C1/SAZr, March 2003

    Google Scholar 

  115. World Health Organisation, World Health Report 2002 (WHO, Geneva, 2002)

    Google Scholar 

  116. D. Adriano, Biogeochemistry of Trace Metals (Lewis, Boca Raton, 1992)

    Google Scholar 

  117. J. Fergusson, The Heavy Elements: Chemistry, Environmental Impact and Health Effects (Pergamon, Oxford, 1991)

    Google Scholar 

  118. T. Kuhlen, C. Fricke-Begemann, N. Strauss, R. Noll, Analysis of size-classified fine and ultrafine particulate matter on substrates with laser-induced breakdown spectroscopy. Spectrochim. Acta B 63, 1171–1176 (2008)

    Article  ADS  Google Scholar 

  119. U. Panne, R. Neuhauser, M. Theisen, H. Fink, R. Niessner, Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy. Spectrochim. Acta B 56, 839–850 (2001)

    Article  ADS  Google Scholar 

  120. Y. Yamamoto, R. Yoshiie, S. Uemiya, Simple and rapid analysis of heavy metals in sub-micron particulates in flue gas, 6th Int. Symp. and Exhibition on Gas Cleaning at High Temperature, Osaka, Japan, 2005

    Google Scholar 

  121. S. Arnold, D. Cremers, Rapid determination of metal particles on air sampling filters using laser-induced breakdown spectroscopy. Am. Ind. Hyg. Assoc. J. 56, 1180–1186 (1995)

    Article  Google Scholar 

  122. M. Marjamäki, J. Keskinen, D. Chen, D. Pui, Performance evaluation of the electrical low-pressure impactor (ELPI). J. Aerosol Sci. 31, 249–261 (2000)

    Article  Google Scholar 

  123. G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, Influence of ambient gas pressure on laser-induced breakdown spectroscopy technique in the parallel double-pulse configuration. Spectrochim. Acta B 59, 1907–1917 (2004)

    Article  ADS  Google Scholar 

  124. L. Radziemski, T. Loree, D. Cremers, N. Hoffman, Time-resolved laser-induced breakdown spectrometry of aerosols. Anal. Chem. 55, 1246–1252 (1983)

    Article  Google Scholar 

  125. R. Neuhauser, U. Panne, R. Niessner, G. Petrucci, P. Cavalli, N. Omenetto, On-line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy. Anal. Chim. Acta 346, 37–48 (1997)

    Article  Google Scholar 

  126. S. Yalcin, D. Crosley, G. Smith, G. Faris, Spectroscopic characterization of laser-produced plasma for in situ toxic metal monitoring. Hazard. Waste Hazard. Mater. 13, 51–61 (1996)

    Article  Google Scholar 

  127. M. Nunez, P. Cavalli, G. Petrucci, N. Omenetto, Analysis of sulfuric acid aerosols by laser-induced breakdown spectroscopy and laser-induced fragmentation. Appl. Spectrosc. 54, 1805–1816 (2000)

    Article  ADS  Google Scholar 

  128. R. Yoshiie, Y. Yamamoto, S. Uemiya, S. Kambara, H. Moritoni, Simple and rapid analysis of heavy metals in sub-micron particulates in flue gas. Powder Technol. 180, 135–139 (2008)

    Article  Google Scholar 

  129. D. Hahn, W. Flower, K. Hencken, Discrete particle detection and metal emission monitoring using laser-induced breakdown spectroscopy. Appl. Spectrosc. 51, 1836–1844 (1997)

    Article  ADS  Google Scholar 

  130. D. Hahn, M. Lunden, Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy. Aerosol Sci. Tech. 33, 30–48 (2000)

    Article  Google Scholar 

  131. J. Carranza, D. Hahn, Sampling statistics and considerations for single-shot analysis using laser-induced breakdown spectroscopy. Spectrochim. Acta B 57, 779–790 (2002)

    Article  ADS  Google Scholar 

  132. J. Carranza, D. Hahn, Plasma volume considerations for analysis of gaseous and aerosol samples using laser-induced breakdown spectroscopy. J. Anal. At. Spectrom. 17, 1534–1539 (2002)

    Article  Google Scholar 

  133. N. Strauss, C. Fricke-Begemann, R. Noll, Size-resolved analysis of fine and ultrafine particulate matter by laser-induced breakdown spectroscopy. J. Anal. At. Spectrosc. 25, 867–874 (2010)

    Article  Google Scholar 

  134. V. Hohreiter, D. Hahn, Calibration effects for laser-induced breakdown spectroscopy of gaseous sample streams: analyte response of gas-phase species versus solid-phase species. Anal. Chem. 77, 1118–1124 (2005)

    Article  Google Scholar 

  135. G. Lithgow, S. Buckley, Influence of particle location within plasma and focal volume on precision of single-particle laser-induced breakdown spectroscopy measurements. Spectrochim. Acta B 60, 1060–1069 (2005)

    Article  ADS  Google Scholar 

  136. V. Hohreiter, D. Hahn, Plasma-particle interactions in a laser-induced plasma: implications for laser-induced breakdown spectroscopy. Anal. Chem. 78, 1509–1514 (2006)

    Article  Google Scholar 

  137. I. Gornushkin, J. Anzano, L. King, B. Smith, N. Omenetto, J. Winefordner, Curve of growth methodology applied to laser-induced plasma emission spectroscopy. Spectrochim. Acta B 54, 491–503 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Noll .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Noll, R. (2012). Bulk Analysis of Nonconducting Materials. In: Laser-Induced Breakdown Spectroscopy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20668-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20668-9_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20667-2

  • Online ISBN: 978-3-642-20668-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics