Skip to main content

Colloidal State and Its Development

  • Reference work entry
Encyclopedia of Colloid and Interface Science
  • 578 Accesses

Synonyms

Colloidal dispersions; Colloidal state

Keywords

Adsorption; Aerosols; Association colloids; Asymmetry; Brownian motion; Carbon nanotubes; Clay colloids; Coalescence; Coagulation and flocculation; Colloid science; Colloidal dispersions; Dialysis; Diffusion; Emulsions; Environmental pollution and remediation; Fullerene; Foams; Gels; Interfacial phenomena; Interparticle interaction; Latexes; Lyophobic colloids; Lyophilic colloids; Micelles; Molecular weight distribution determination; Monodisperse particles; Nanotechnology; Sols; Stability of colloids; Supramolecular self-assembly; Light scattering; Particle characterization; Particle electrophoresis; Particle morphology; Particle size analysis; Protein purification; Quantum dots; Real-time analysis of particulates; Reverse osmosis and desalination; Rheology and flow properties of dispersion; Water purification and recycling

Definition

  • Colloids, colloidal dispersions: a dispersion of particles (solid, liquid, gas) of colloidal...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajayan PM, Iijima S (1992) Smallest carbon nanotube. Nature 358:23

    Google Scholar 

  • Antonii F (1618) Panacea Aurea-Auro Potabile. Bibliopolio Frobeniano, Hamburg

    Google Scholar 

  • Asua JM (1997) Polymeric dispersions principles and applications, NATO ASI Series. Kluwer, Dordrecht

    Google Scholar 

  • Barclay LM, Ottewill RH (1970) Measurement of forces between colloidal particles. Spec Discuss Faraday Soc 1:138–147

    CAS  Google Scholar 

  • Binnig G, Rohrer H (1986) Scanning tunneling microscopy. IBM J Res Develop 30:34

    Google Scholar 

  • Binnig G, Rohrer H, Gerber C, Weibel E (1982a) Tunneling through a controllable vacuum gap. Appl Phys Lett 40:178–180

    CAS  Google Scholar 

  • Binnig G, Rohrer H, Gerber C, Weibel E (1982b) Surface studies by scanning tunneling microscopy. Phys Rev Lett 49:57–61

    Google Scholar 

  • Candau F, Ottewill RH (1990) Scientific methods for the study of polymer colloids and their applications, NATO ASI Series. Kluwer, Dordrecht

    Google Scholar 

  • Chapman DL (1913) LI.A contribution to the theory of electrocapillarity. Philos Mag Ser 6(25):475–481

    Google Scholar 

  • Chemistry World (July 2003) Surfactants: the ubiquitous amphiphiles. Royal Society Chemistry, UK

    Google Scholar 

  • Cho JM, Sigmund WM (2002) Direct surface force measurement in water using a nanosize colloidal probe technique. J Colloid Interface Sci 245(2):405–407

    CAS  Google Scholar 

  • Cho JM, Pyrgiotakis G, Sigmund WM (2004) Surface forces on nanoparticles determined by direct measurement. Dekker encyclopedia of nanoscience and nanotechnology. Marcel Dekker, New York, pp 3805

    Google Scholar 

  • Chu K (March 3, 2011) From toilets to tap: How we get tap water from sewage. USA TODAY http://www.usatoday.com/money/industries/environment/2011-03-03-1Apurewater03_CV_N.htm

  • Claesson S, Pedersen KO (Nov 1,1972) The Svedberg 1884–1971 Biogr. Mems Fell R Soc 18:594–627

    Google Scholar 

  • Derjaguin B, Landau L (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physico Chemica URSS 14:633

    Google Scholar 

  • Ducker WA, Senden TJ, Pashley RM (1991) Direct measurement of colloidal forces using an atomic force microscope. Nature 353:239–241

    CAS  Google Scholar 

  • Einstein A (1905) Ann Phys 17:549

    CAS  Google Scholar 

  • Einstein A (1956) Investigations on the theory of the Brownian movement. Dover, New York

    Google Scholar 

  • Faraday M (1857) Experimental relations of gold (and other metals) to light. Philos Trans 147:145–181

    Google Scholar 

  • Feynman RP (February 1960) There’s plenty of room at the bottom: an invitation to enter a new field of physics. Caltech Eng Sci 23(5):22–36

    Google Scholar 

  • Goldsmith HL, Mason SG (1975) Some model experiments in hemodynamics-V: microrheological techniques. Biorheology 12(3–4):181–192

    CAS  Google Scholar 

  • Gouy G (1909) Comt Rend 149:654

    CAS  Google Scholar 

  • Gouy G (1910) Sur la constitution de la charge electrique a la surface d’un electrolyte. J Phys (Paris) 9:457–468

    CAS  Google Scholar 

  • Graham T (1861) Liquid diffusion applied to analysis. Philos Trans R Soc Lond 151:183–224

    Google Scholar 

  • Hamaker HC (1937) London-van der Waals attraction between spherical particles. Physica 4:1058–1072

    CAS  Google Scholar 

  • Hartman AW, McKenzie RL (1988) Description of the SRM 1965 microsphere slide. NIST SP260-107. National Institute of Standards and Technology, Gaithersburg, MD

    Google Scholar 

  • Homola A, Robertson AA (1976) A compression method for measuring forces between colloidal particles. J Colloid Interface Sci 54(2):286–297

    CAS  Google Scholar 

  • Hunter RJ (2001) Foundation of colloid science, 2nd edn. Oxford University Press, Oxford, pp 208

    Google Scholar 

  • Iijima S, Ajayan PM, Ichihashi T (1992) Growth model for carbon nanotubes. Phys Rev Lett 69:3100–3103

    CAS  Google Scholar 

  • Israelachvili JN, Adams GE (1978) Measurement of forces between two mica surfaces in aqueous electrolyte solutions in the range 0–100 nm. J Chem Soc Faraday Trans 1(74):975–1001

    Google Scholar 

  • Israelachvili JN, McGuiggan PM (1988) Forces between surfaces in liquids. Science 241(4867):795–800

    CAS  Google Scholar 

  • Japan Nanonet Bulletin, 1st Issue, September 18, 2003

    Google Scholar 

  • Kanellos M (Nov 17, 2009) Sewage to drinking water: Singapore paves the way. http://www.greentechmedia.com/articles/read/sewage-to-drinking-water-singapore-shows-the-way/

    Google Scholar 

  • Kissa E (1999) Dispersions: characterization testing and measurement. Marcel Dekker, New York, pp 174

    Google Scholar 

  • Kornfeld MD (1985) Monodisperse latex reactor (MLR). NASA TM-86487. NASA, Washington, DC

    Google Scholar 

  • Kroto HW, Heath JR, Obrien SC, Curl RF, Smalley RE (1985) Buckminsterfullerene. Nature 318(14):162–163

    CAS  Google Scholar 

  • Krueger KM, Al-Somali AM, Falkner JC, Colvin VL (2005) Characterization of nanocrystalline CdSe by size exclusion chromatography. Anal Chem 77:3511–3515

    CAS  Google Scholar 

  • Kunckels J (1676) Nuetliche Observationes oder Anmerkungen von Auro und Argento Potabili. Schutzens, Hamburg

    Google Scholar 

  • Kyle RA, Shampo MA (September 1997) Theodor Svedberg and the ultracentrifuge. Mayo Clin Proc 72(9):830

    CAS  Google Scholar 

  • Li P, Zhu J, Sunintaboon P, Harris FW (2002) New route to amphiphilic core shell polymer nanospheres: graft copolymerization of methyl methacrylate from water-soluble polymer chains containing amino groups. Langmuir 18:8641–8646

    Google Scholar 

  • Li P, Zhu J, Sunintaboon P, Harris F (2003) Preparation of latexes with poly(methyl methacrylate) cores and hydrophilic polymer shells containing amino groups. J Dispersion Sci Technol 24:607

    CAS  Google Scholar 

  • Libert S, Gorshkov V, Privman V, Goia D, Matijević E (2003) Formation of monodispersed cadmium sulphide particles by aggregation of nanosize precursor. Adv Colloid Interface Sci 100–102:169–183

    Google Scholar 

  • Lovell PA, El-Aasser MS (1997) Emulsion polymerization and emulsion polymers. Wiley, New York

    Google Scholar 

  • Malvern Instruments Zetasizer Nano Application Note 2006

    Google Scholar 

  • Matijevic E (1986) Monodispersed colloids: art and science. Langmuir 2:12–20

    CAS  Google Scholar 

  • McFarland AD, Haynes CL, Mirkin CA, Van Duyne RP, Godwin HA (2004) Color my nanoworld. J Chem Educ 81:544A

    CAS  Google Scholar 

  • McGuinnes C, Duffin R, Simon Brown S, Mills NL, Megson IL, MacNee W, Johnston S, Lu SL, Tran L, Li RF, Wang X, Newby DE, Donaldson K (2011) Surface derivatization state of polystyrene latex nanoparticles determines both their potency and their mechanism of causing human platelet aggregation in vitro. Toxicol Sci 119(2):359–368

    CAS  Google Scholar 

  • Medintz IL et al (2003) Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nature Mater 2:630–638

    CAS  Google Scholar 

  • Mie G (1908) Contributions to the optics of turbid media, particularly of colloidal metal solutions. Ann Phys 330:377–445

    Google Scholar 

  • Moore CA, Fietzek BP, Lewis MR, Sosik HM, White S, Zielinski O (2009) Optical tools for ocean monitoring and research. Ocean Sci 5:661–684

    Google Scholar 

  • Nixon SW (1995) Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41:199–219

    Google Scholar 

  • OceanLines, August 25, 2008.

    Google Scholar 

  • Olson RJ, Sosik HM (2007) A submersible imaging-in-flow instrument to analyze nanoand microplankton: imaging Flow Cytobot. Limnol Oceanogr Methods 5(2007):195–203

    Google Scholar 

  • Ostwald CWW (1917) An introduction to theoretical and applied colloid chemistry. Wiley, New York

    Google Scholar 

  • Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A, Stone V, Brown S, MacNee W, Donaldson K (2008) Nat Nanotechnol 3:423–428

    CAS  Google Scholar 

  • Prieve DC, Frej NA (1990) Total internal-reflection microscopy - A quantitative tool for the measurement of colloidal forces. Langmuir 6(2):396–403

    CAS  Google Scholar 

  • Renken RA, Cunningham KJ, Zygnerski MR, Zygnerski MR, Wacker MA, Shapiro AM, Harvey RW, Harvey RW, Metge DW, Osborn CL, Osborn CL, Ryan JN (2005) Assessing the vulnerability of a municipal well field to contamination in a karst aquifer. Environ Eng Geosci 11:319–331

    Google Scholar 

  • Riess JG, LeBlanc M (1978) Perfluoro compounds as blood substitites. Angew Chem 17:621–634

    CAS  Google Scholar 

  • Ryan JN, Aiken GR, Backhus DA, Villholth KG, Hawley CM (1999) Investigating the potential for colloid- and organic matter-facilitated transport of polycyclic aromatic hydrocarbons in crude-oil contaminated ground water. In: Morgenwalp DW, Buxton HT (eds) U.S. geological survey toxic substances hydrology program – Proceedings of the Technical Meeting, Charleston, South Carolina, March 8–12, 1999 – Volume 3 of 3 – Subsurface contamination from point sources. U.S. Geological Survey Water-Resources Investigation Report 99–4018C, pp 211–222

    Google Scholar 

  • Savage G (1975) Glass and glassware. Octopus Book, London

    Google Scholar 

  • Schofield JD (1991) J Oil Color Chem Assoc 74:204

    CAS  Google Scholar 

  • Sharma V, Park KW, Srinivasarao M (15 May 2009), Materials Science and Engineering R: Reports 65(1–3):1–38

    Google Scholar 

  • Shaw DJ (1992) Introduction to colloid science, 4th edn. Butterworth Heinemann, Oxford, pp7

    Google Scholar 

  • Small H (1974) Hydrodynamic chromatography a technique for size analysis of colloidal particles. J Colloid Interface Sci 48(1):147–161

    CAS  Google Scholar 

  • Stern O (1924) Theory of a double-electric layer with the consideration of the adsorption processes. Z Electrochem 30:508–516

    CAS  Google Scholar 

  • Sutherland W (1905) A dynamical theory of diffusion for non-electrolytes and the molecular mass of albumin. Philos Mag S.6(9):781–785

    Google Scholar 

  • Takeuchi T, Siswoyo AZ, Lim LW (2009) Hydrodynamic chromatography of silica colloids on small spherical nonporous silica particles. Anal Sci 25:301–306

    CAS  Google Scholar 

  • Taniguchi N (1974) On the basic concept of ‘nano-technology’. Proc. Intl. Conf. Prod. Eng. Tokyo, Part II, Japan Society of Precision Engineering

    Google Scholar 

  • Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier, Amsterdam

    Google Scholar 

  • Wagner FE et al (2000) Nature 407:691

    CAS  Google Scholar 

  • Wei GT, Liu FK, Wang CRC (1999) Shape separation of nanometer gold particles by size-exclusion chromatography. Anal Chem 71:2085–2091

    CAS  Google Scholar 

  • Weitz DA, Russel WB (2004) New developments in colloid science. MRS Bull 29(2):82–84

    CAS  Google Scholar 

  • Wikipedia on dialysis kidney

    Google Scholar 

  • Zsigmondy R (1926). Properties of colloids. Nobel Foundation, December 11 1926

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chee-Cheong Ho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Ho, CC. (2013). Colloidal State and Its Development. In: Tadros, T. (eds) Encyclopedia of Colloid and Interface Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20665-8_9

Download citation

Publish with us

Policies and ethics